Archive for the ‘Rickettsia’ Category

Neglected Vector-borne Zoonoses in Europe

https://www.ncbi.nlm.nih.gov/m/pubmed/29426471/

Neglected vector-borne zoonoses in Europe: Into the wild.

Tomassone L1Berriatua E2De Sousa R3Duscher GG4Mihalca AD5Silaghi C6Sprong H7Zintl A8. Vet Parasitol. 2018.

Abstract

Wild vertebrates are involved in the transmission cycles of numerous pathogens. Additionally, they can affect the abundance of arthropod vectors. Urbanization, landscape and climate changes, and the adaptation of vectors and wildlife to human habitats represent complex and evolving scenarios, which affect the interface of vector, wildlife and human populations, frequently with a consequent increase in zoonotic risk. While considerable attention has focused on these interrelations with regard to certain major vector-borne pathogens such as Borrelia burgdorferi s.l. and tick-borne encephalitis virus, information regarding many other zoonotic pathogens is more dispersed. In this review, we discuss the possible role of wildlife in the maintenance and spread of some of these neglected zoonoses in Europe. We present case studies on the role of rodents in the cycles of Bartonella spp., of wild ungulates in the cycle of Babesia spp., and of various wildlife species in the life cycle of Leishmania infantum, Anaplasma phagocytophilum and Rickettsia spp.

These examples highlight the usefulness of surveillance strategies focused on neglected zoonotic agents in wildlife as a source of valuable information for health professionals, nature managers and (local) decision-makers. These benefits could be further enhanced by increased collaboration between researchers and stakeholders across Europe and a more harmonised and coordinated approach for data collection.

______________

**Comment**

They are neglected in the U.S. too, but all play a significant role in patient case complexity.

Forget Ebola, Sars and Zika: Ticks are the Next Global Health Threat

https://www.theguardian.com/science/blog/2018/jan/25/forget-ebola-sars-and-zika-ticks-are-the-next-global-health-threat

Forget Ebola, Sars and Zika: ticks are the next global health threat

Ticks carry a wide array of pathogens – and environmental changes mean they are spreading

A blacklegged tick - also known as a deer tick.

Since the beginning of our species we have been at war. It’s a continuous, neverending fight against the smallest of adversaries: armies of pathogens and parasites. As we have developed new ways to survive and stop them, they have evolved ever more complex and ingenious methods to thwart our efforts.

Humans have faced numerous attempts to challenge our dominance on planet Earth and from the Black Death to the Spanish flu, we have weathered them all. However, since the start of the 21st century, with its trend towards global interconnectedness, these onslaughts are ever-increasing. In the past 17 years we have battled Sars, the Ebola virusMers, and more recently the mysterious mosquito-borne Zika virus. These diseases seeming to appear from nowhere and rapidly ravage our populations. One commonality is that they almost always originate in animals before jumping across to people, and few parasites are as good at jumping between animals and people as the tick.

Ticks could be best described as the used syringes of the natural world due to their promiscuous feeding habits. Most ticks go through three stages in their lives and feed on a different host at each stage, whilst simultaneously collecting hitchhiking microbes in their blood meals. Ticks also have one of the widest distributions of any vector on Earth – they can be found on every continent, including frigid Antarctica. This combination of ubiquity and a bad habit for accumulating pathogenic microbes make ticks some of the most dangerous vectors on the planet.

So why ticks? And why now?

Partly, it’s because ticks have been understudied for so long that only recently have we begun to realise just how much they affect our health. It took until 1975 for the infamous Lyme disease even to be formally described, and today the list of microbes found within ticks grows ever larger every year as numerous new species are discovered.

An engorged tick removed from a host.
An engorged tick removed from a host. Photograph: Astrid860/Getty Images/iStockphoto

Changing ecosystems are also forcing ticks into closer contact with humans. Perhaps the most immediate changes are being driven by land clearing, which is forcing wildlife into closer contact with humans; with wildlife come ticks and the diseases they carry. Climate change has also been implicated: as the climate gets warmer, some ticks are expanding their ranges into places where cool winter temperatures previously limited their distribution. Geographical boundaries are also being eroded as rapid transport links environments which were previously isolated from one another. This presents easy opportunity for ticks to cross borders and spread to new habitats they may not have previously occupied.

In short, our manipulation of the environment has set the stage for a tick-driven health crisis.

Ticks can carry an extremely wide array of human pathogens, including bacteria, viruses, and protozoa. Within the long list of human ailments caused by ticks, several dangerous diseases stand out.

https://interactive.guim.co.uk/uploader/embed/2017/08/ticks_lyme_disease/giv-3902DdVd63hb2z2v/

While the recognition of Lyme disease has led to a greater study of the bacteria which cause it and more frequent testing for patients, it has been a double-edged sword, as its notoriety has overshadowed equally important diseases like tick-borne rickettsiosis (TBR). TBR is caused by a number of different bacteria distributed across the globe. Unfortunately, TBR often presents with signs and symptoms similar to Lyme disease, such as rashes, joint and muscle pain, and fatigue. Although deaths are rare when TBR is treated with antibiotics like doxycycline, when the disease is incorrectly diagnosed or adequate medical infrastructure is lacking, mortalities can still occur.

Babesiosis is an emerging tick-borne disease caused by a protozoan called Babesia, a species related to the microbe which causes malaria. The disease is rarely tested for by doctors and the global levels of human infection are unknown, although some researchers believe that they may be much higher than present rates of diagnosis indicate. Infections can be highly variable, with about a quarter of infected adults showing no signs of the disease, while others will die from the infection. In truth the disease is still poorly understood in humans, which is compounded by the fact that several species of Babesia cause the disease and the signs and symptoms can be wide-ranging and often include fever, fatigue, anaemia, and nausea – all common features of other illnesses.

The distinctive “bullseye” marking caused by a bite from a deer tick.
The distinctive “bullseye” marking caused by a bite from a deer tick. Photograph: anakopa/Getty Images/iStockphoto

Crimean-Congo haemorrhagic fever (CCHF) is perhaps the most terrifying disease spread by ticks, as there are no treatments available, and mortality rates can be as high as 40% in infected humans. To put it into perspective, that mortality rate is similar to untreated cases of Ebola or the bubonic plague. The World Health Organisation views CCHF virus as having a high chance of causing human disease epidemics and has accordingly directed considerable funding towards finding a treatment, although to date none have been developed. The wide distribution of tick vectors capable of spreading the disease coupled with the ability of common domestic animals such as sheep and cattle to maintain the CCHF virus in their blood at high levels means the potential for CCHF to expand into new regions like Europe is highly probable.

While only discovered in 2009, SFTS virus (severe fever with thrombocytopenia syndrome) has sparked widespread fear through much of Asia, especially in Japan where 57 people have died of the disease since 2013. Signs of the disease can range in severity from relatively mild, like fever and diarrhoea, to severe, which can include multiple organ failure. The fact that the epidemiology of the disease is so poorly known makes predicting and controlling its spread difficult. It is also known to be carried by at least two cosmopolitan tick species which are spread throughout the world from the UK, to the US, and even Australia. That might sounds bad enough, but things are even worse: although the disease typically gets to humans via a tick, from there it can spread to other humans or their pets and back again into ticks who feed on infected hosts.

Ticks are ubiquitous, dangerous, and are coming into ever greater contact with us. We must recognise that the next public health crisis may come from our backyards rather than a remote equatorial jungle in Africa or Asia.

_____________

**Comment**

I’m thankful the article points out that other pathogens are involved.  For those with Lyme as well as these other pathogens (which is common), they typically have more severe cases and require longer and more extensive treatment.  

Ticks carry many viruses, and tick bites as well as vaccines can ignite dormant viruses in the body:  https://madisonarealymesupportgroup.com/2017/12/02/scottish-doctor-gives-insight-on-lyme-msids/

https://madisonarealymesupportgroup.com/2017/11/04/24514/  Many Lyme/MSIDS patients have reactivated Epstein Bar Virus (EBV).

https://madisonarealymesupportgroup.com/2018/01/16/a-strange-itch-trouble-breathing-then-anaphylactic-shock/

The Cabal still denies ticks transmit Bart; however, many feel otherwise.  This is why all the research in the world put out by the Cabal will never touch Bart.  It doesn’t fit the narrative.  The fly in the ointment is similar to sexual transmission for Lyme, the organisms have been found but there isn’t conclusive proof of transmission.  Many of these pathogens are fastidious and hard to study in a lab.  All case studies are ignored.

I’m always fascinated that Bartonella and Mycoplasma are rarely mentioned in regards to coinfections by mainstream news – as according to experts Dr. Nicholson and Dr. Breitshwerdt, they are probably the TOP coinfections with Lyme.  

More on Bartonella:  

https://www.northcarolinahealthnews.org/2013/12/05/bartonella-is-everywhere-so-why-dont-we-know-more-about-it/  Bartonella is a bacteria transmitted by fleas, ticks, animals, even spiders, but few people know about it.

https://madisonarealymesupportgroup.com/2016/01/03/bartonella-treatment/

https://madisonarealymesupportgroup.com/2017/11/03/first-report-of-bartonella-quintana-immune-reconstitution-inflammatory-syndrome-complicated-by-jarisch-herxheimer-reaction/

https://madisonarealymesupportgroup.com/2017/10/23/opthalmic-manifestations-of-bartonella-infection/

More on Myco:  https://madisonarealymesupportgroup.com/2016/02/07/mycoplasma-treatment/

https://madisonarealymesupportgroup.com/2015/08/12/connecting-dots-mycoplasma/

https://wwwnc.cdc.gov/eid/article/3/1/97-0103_article  This 1997 article even implicates Myco with Gulf War Syndrome, despite the CDC denying, denying, denying it.

https://madisonarealymesupportgroup.com/2017/08/26/interstitial-cystitis-and-lyme-disease/

 

Bb Infected Ticks in Iowa

Range Expansion and Increasing Borrelia burgdorferi Infection of the Tick Ixodes scapularis (Acari: Ixodidae) in Iowa, 1990-2013.

Oliver JD, Bennett SW, Beati L, Bartholomay LC.
Journal of Medical Entomology. 2017 Nov 7;54(6):1727-1734.

https://doi.org/10.1093/jme/tjx121

Abstract

A passive surveillance program monitored ticks submitted by the public in Iowa from 1990–2013. Submitted ticks were identified to species and life stage, and Ixodes scapularis Say nymphs and adults were tested for the presence of Borrelia burgdorferi.

An average of 2.6 of Iowa’s 99 counties submitted first reports of I. scapularis per year over the surveillance period, indicating expansion of this tick species across the state. The proportion of vector ticks infected by B. burgdorferi increased over time between 1998 and 2013.

In 2013, 23.5% of nymphal and adult I. scapularis were infected with B. burgdorferi, the highest proportion of any year. Active surveillance was performed at selected sites from 2007–2009. Ixodes scapularis nymphs collected at these sites were tested for the presence of B. burgdorferi, Anaplasma phagocytophilum, and spotted fever group Rickettsia spp. (likely representing Rickettsia buchneri).

Nymphs tested were 17.3% positive for B. burgdorferi, 28.9% for A. phagocytophilum, and 67.3% for Rickettsia spp. The results of these surveillance programs indicate an increasing risk of disease transmission by I. scapularis in Iowa.

______________

For more:  https://madisonarealymesupportgroup.com/2017/08/17/of-birds-and-ticks/

https://madisonarealymesupportgroup.com/2017/12/03/biologists-at-sf-state-dig-into-ticks-and-ld/

https://madisonarealymesupportgroup.com/2017/10/06/remembering-dr-masters-the-rebel-for-lyme-patients-who-took-on-the-cdc-single-handedly/  “Go here: http://steveclarknd.com/wp-content/uploads/2013/11/The-Confounding-Debate-Over-Lyme-Disease-in-the-South-DiscoverMagazine.com_.pdf for a great article on how Andrew Spielman’s tick maps ruled Lyme Land like the iron curtain, and frankly still do, dictating where Lyme is and is not. https://madisonarealymesupportgroup.com/2017/08/24/canine-maps-better-than-the-cdcs-in-predicting-lyme-disease/ (nothing’s changed)”

 

 

 

 

Nearly 30% of Ticks on Italian Dogs Found to be infected with Tick-borne Pathogens

http://online.liebertpub.com/doi/10.1089/vbz.2017.2154

Vector-Borne and Zoonotic Diseases

Molecular Survey on Rickettsia spp., Anaplasma phagocytophilumBorrelia burgdorferi sensu lato, and Babesia spp. in Ixodes ricinus Ticks Infesting Dogs in Central Italy

Morganti Giulia, Gavaudan Stefano, Canonico Cristina, Ravagnan Silvia, Olivieri Emanuela, Diaferia Manuela, Marenzoni Maria Luisa, Antognoni Maria Teresa, Capelli Gioia, Silaghi Cornelia, and Veronesi Fabrizia. https://doi.org/10.1089/vbz.2017.2154

Online Ahead of Print: October 12, 2017

ABSTRACT

Dogs are a common feeding hosts for Ixodes ricinus and may act as reservoir hosts for zoonotic tick-borne pathogens (TBPs) and as carriers of infected ticks into human settings. The aim of this work was to evaluate the presence of several selected TBPs of significant public health concern by molecular methods in I. ricinus recovered from dogs living in urban and suburban settings in central Italy.

A total of 212 I. ricinus specimens were collected from the coat of domestic dogs. DNA was extracted from each specimen individually and tested for Rickettsia spp., Borrelia burgdorferi sensu lato, Babesia spp., and Anaplasma phagocytophilum, using real-time and conventional PCR protocols, followed by sequencing.

Sixty-one ticks (28.8%) tested positive for TBPs; 57 samples were infected by one pathogen, while four showed coinfections. Rickettsia spp. was detected in 39 specimens (18.4%), of which 32 were identified as Rickettsia monacensis and seven as Rickettsia helvetica. Twenty-two samples (10.4%) tested positive for A. phagocytophilum; Borrelia lusitaniae and Borrelia afzelii were detected in two specimens and one specimen, respectively. One tick (0.5%) was found to be positive for Babesia venatorum (EU1).

Our findings reveal the significant exposure of dogs to TBPs of public health concern and provide data on the role of dogs in the circulation of I. ricinus-borne pathogens in central Italy.

 

For more:  https://madisonarealymesupportgroup.com/2017/10/04/droplet-digital-pcr-shows-60-bb-infection-rate-in-ticks-and-over-50000-spirochetes-per-adult-tick/

https://madisonarealymesupportgroup.com/2016/11/05/infected-ticks-in-ontario/

https://madisonarealymesupportgroup.com/2017/08/17/of-birds-and-ticks/

https://madisonarealymesupportgroup.com/2017/09/20/night-at-the-blood-sucking-creature-museum/

https://madisonarealymesupportgroup.com/2017/09/19/tbis-in-australia/

Start Treatment if TBI’s are Suspected

http://www.mdedge.com/ccjm/article/141387/dermatology/tickborne-diseases-other-lyme-united-states  Cleveland Clinic Journal of Medicine. 2017 July;84(7):555-567

KEY POINTS

  • Tickborne illnesses should be considered in patients with known or potential tick exposure presenting with fever or vague constitutional symptoms in tick-endemic regions.
  • Given that tick-bite history is commonly unknown, absence of a known tick bite does not exclude the diagnosis of a tick-borne illness.
  • Starting empiric treatment is usually warranted before the diagnosis of tickborne illness is confirmed.
  • Tick avoidance is the most effective measure for preventing tickborne infections.

____________________________________________________________________________

The article delineates symptoms, transmission, reservoirs, testing, and treatment of the following TBI’s:  Rocky Mountain Spotted Fever, Rickettsiosis, Ehrlichioses, Babesiosis, Tickborne relapsing fever, Borrelia miyamotoi, Southern Tick-associated Rash illness, Tularemia, and Tickborne viral infections.

101_emrash316x316

47_rash316x316

I need to address the following statements at the end of the article:

“Knowledge of the geographic locations of potential exposure is paramount to determining which tickborne infections to consider, and the absence of a tick bite history should not exclude the diagnosis in the correct clinical presentation.

Clinicians need to tread carefully here.  Many patients have been denied testing and treatment due to a map.  These maps should be viewed with the same suspicion as the testing.  

25_antibody316x316

01_test_petri316x316

38_sensitive316x316

Until you tell the fox, squirrel, bird, deer, lizards, and hundreds of other reservoirs to stay put, ticks will be traveling everywhere along with the pathogens they carry.  Since Lyme Disease (borrelia) has been found in every continent except for Antarctia (it will be found there too), you can assume that means ticks are there too.  

I’m glad the authors stated this:

In addition, it is important to recognize the limitations of diagnostic testing for many tickborne infections; empiric treatment is most often warranted before confirming the diagnosis.”132_fail316x316

For those of us in this war, this “empiric treatment” by mainstream medicine is new.  Patient after patient has had to wait for test results before doctors will treat them.  Often, since the testing is so poor, it comes back negative and the patient is sent packing, even if the patient has every symptom in the book.  The next step is for authorities to admit and acknowledge that diagnosis of Tick borne infections is a clinical one.  This means doctors need to learn a whole lot more.  For docs willing to learn, please see:  https://www.lymecme.info

Even the CDC admits the tests suck: https://madisonarealymesupportgroup.com/2017/07/01/good-morning-america-cdc-advises-multiple-lyme-tests-due-to-false-negative-results/ CDC spokesperson at end of video.

Another very important point needs to be made.  The CDC has pushed this one pathogen for one tick mantra for too long.  Many patients are co-infected making cases infinitely more complex and challenging to treat.  Lyme literate doctors trained by ILADS understand this and treat accordingly.  Until mainstream medicine realizes and admits people can have numerous pathogens, and treat for them, people will not get better.  This is why all the doxycycline in the world will not help some patients.

32_co316x316

One last point is that mycoplasma, Bartonella, and other pathogens are not included here but are quite common in patients.  Many of these pathogens are persistent and are adept at surviving.  More research needs to be done on these co-infections.

Please see:

https://madisonarealymesupportgroup.com/2017/05/01/co-infection-of-ticks-the-rule-rather-than-the-exception/  If ticks are co-infected, so are patients.

https://madisonarealymesupportgroup.com/2017/07/01/one-tick-bite-could-put-you-at-risk-for-at-least-6-different-diseases/

https://madisonarealymesupportgroup.com/2016/03/20/why-we-cant-get-better/

 

 

Wolbachia – The Next Frankenstein?

Transmission electron micrograph of Wolachia within an insect cell

Credit:  Public Library of Science/Scott O’Neill

The latest in the effort for world domination over bugs and the diseases they carry is Wolbachia, a Gram-negative bacterium of the family Rickettsiales first found in 1924 and in 60% of all the insects, including some mosquitoes, crustaceans, and nematodes (worms). For those that like numbers, that’s over 1 million species of insects and other invertebrates. It is one of the most infectious bacterial genera on earth and was largely unknown until the 90’s due to its evasion tactics. It’s favorite hosts are filarial nematodes and arthropods.

Wolachia obtains nutrients through symbiotic relationships with its host. In arthropods it affects reproductive abilities by male killing, parthenogenesis, cytoplasmic incompatibility and feminization. However, if Wolbachia is removed from nematodes, the worms become infertile or die. These abilities are what make it so appealing for insect controlcytoplasmic incompatibility, which essentially means it results in sperm and eggs being unable to form viable offering.

http://www.slideserve.com/babu/wolbachia  (Nifty slide show here)

It also makes it appealing for use in human diseases such as elephantiasis and River Blindness caused by filarial nematodes, which are treated with antibiotics (doxycycline) targeting Wolbachia which in turn negatively impacts the worms. Traditional treatment for lymphatic Filariasis is Ivermectin but they also use chemotherapy to disrupt the interactions between Wolbachia and nematodes. This anti-Wolbachia strategy is a game-changer for treating onchocerciasis and lymphatic filariasis.  https://www.sciencedaily.com/releases/2017/03/170316120451.htm

Lyme/MSIDS patients often have nematode involvement.

https://microbewiki.kenyon.edu/index.php/Wolbachiahttps://www.psychologytoday.com/blog/emerging-diseases/200902/tick-menagerie-lyme-isnt-the-only-disease-you-can-get-tick  Both Willy Burgdorfer, the discoverer of the Lyme bacterium, as well as Richard Ostfeld, an animal ecologist found nematode worms in ticks. Since then, some provocative research involving nematodes, Lyme/MSIDS, dementia, and Alzheimer’s has been done.

https://madisonarealymesupportgroup.com/2016/06/03/borrelia-hiding-in-worms-causing-chronic-brain-diseases/https://madisonarealymesupportgroup.com/2016/08/09/dr-paul-duray-research-fellowship-foundation-some-great-research-being-done-on-lyme-disease/https://madisonarealymesupportgroup.com/2016/07/10/greg-lee-excellent-article-on-strategies-for-neurological-lyme/https://madisonarealymesupportgroup.com/2015/10/18/psychiatric-lymemsids/

https://www.scientificamerican.com/article/how-a-tiny-bacterium-called-wolbachia-could-defeat-dengue/  Yet, according to many, Wolbachia is the next eradicator of Dengue Fever and possibly Malaria, chikungunya, and yellow fever because it stops the virus from replicating inside mosquitoes that transmit the diseases. The approach is also believed to have potential for other vector-borne diseases like sleeping sickness transmitted by the tsetse fly.  Evidently, Wolbachia does not infect the Aedes aegypti mosquito naturally, so researchers have been infecting mosquitoes in the lab and releasing them into the wild since 2011. The article states it hopes that the method works and expects infection rates in people to drop and hopes that the mosquitoes will pass the bacterium to their offspring, despite it disappearing after a generation or two of breeding and needing to “condition” the microbes to get them used to living in mosquitoes before injecting them. They also state Wolbachia is “largely benign for mosquitoes and the environment,” and “To humans, Wolbachia poses no apparent threat.” Their work has shown that the bacterium resides only within the cells of insects and other arthropods. They also state that tests on spiders and geckos that have eaten Wolbachia mosquitoes are just fine and show no symptoms. An independent risk assessment by the Commonwealth Scientific and Industrial Research Organizatioin (CSIRO), Australia’s national science agency, concluded that, “Release of Wolbachia mosquitoes would have negligible risk to people and the environment.”

Interestingly, trials are underway in Vietnam, Indonesia, and now Brazil.

They state that scaling up operations to rear enough Wolbachia mosquitoes is too labor-intensive and in Cairns they are going to put Wolbachia mosquito eggs right into the environment. Evidently, other researchers are wanting to release genetically modified (GMO) mosquitoes that carry a lethal gene, and they’ve done it, and it’s causing an uproar:   http://america.aljazeera.com/articles/2013/11/9/genetically-modifiedmosquitoessetoffuproarinfloridakeys.html

http://www.naturalnews.com/2017-07-25-googles-sister-company-releasing-20-million-mosquitoes-infected-with-fertility-destroying-bacteria-depopulation-experiment.html  As of July 14, 2017, Google’s bio-lab, Verily Life Sciences,  started releasing Wolbachia laced mosquitoes in California as part of project, Debug Fresno to reduce the mosquito population.

http://www.greenmedinfo.com/blog/research-exposes-new-health-risks-genetically-modified-mosquitoes-and-salmon  Numerous studies show unexpected insertions and deletions which can translate into possible toxins, allergens, carcinogens, and other changes.  Science can not predict the real-life consequences on global pattens of gene function.

So, why question the use of Wolbachia as a bio-control?

For Lyme/MSIDS patients, 3 words: worms and inflammation.

Dogs treated for heart worm (D. immitis) have trouble due to the heart worm medication causing Wolbachia to be released into the blood and tissues causing severe Inflammation in pulmonary artery endothelium which may form thrombi and interstitial inflammation. Wolbachia also activates pro inflammatory cytokines. Pets treated with tetracycline a month prior to heart worm treatment will kill some D. immitis as well as suppress worm production. When given after heart worm medication, it may decrease the inflammation from Wolbachia kill off.
http://www.critterology.com/articles/wolbachia-and-their-role-heartworm-disease-and-treatment

The words worms and inflammation should cause every Lyme/MSIDS patient to pause. Many of us are put on expensive anthelmintics like albendazole, ivermectin, Pin X, and praziquantel to get rid of worms and are told to avoid anything causing inflammation due to the fact we have enough of it already. We go on special anti-inflammatory diets and take systemic enzymes and herbs to try and lower inflammation.   https://madisonarealymesupportgroup.com/2016/04/22/systemic-enzymes/

Seems to me, many MSIDS/LYME patients when treated with anthelmintics, will have Wolbachia released into their blood and tissues causing wide spread inflammation, similarly to dogs.

And that’s not all.

According to a study by Penn State, mosquitoes infected with Wolbachia are more likely to become infected with West Nile – which will then be transmitted to humans.“This is the first study to demonstrate that Wolbachia can enhance a human pathogen in a mosquito, one researcher said. “The results suggest that caution should be used when releasing Wolbachia-infected mosquitoes into nature to control vector-borne diseases of humans.” “Multiple studies suggest that Wolbachia may enhance some Plasmodium parasites in mosquitoes, thus increasing the frequency of malaria transmission to rodents and birds,” he said.  The study states that caution should be used when releasing Wolbachia-infected mosquitoes into nature. https://www.sciencedaily.com/releases/2014/07/140710141628.htm

So besides very probable wide spread inflammation, and that other diseases may become more prevalent due to Wolbachia laced mosquitoes, studies show Wolbachia enhances Malaria in mosquitos. Lyme/MSIDS patients are often co-infected with Babesia, a malarial-like parasite that requires similar treatment and has been found to make Lyme (borrelia) much worse. It is my contention that the reason many are not getting well is they are not being treated for the numerous co-infections.  Some Lyme/MSIDS patients have Malaria and Lyme.

Regardless of what the CDC states, all the doxycycline in the world is not going to cure this complicated and complex illness.

Lastly, with Brazil’s recent explosion of microcephaly, the introduction of yet another man-made intervention (Wolbachia laced mosquitos) should be considered in evaluating potential causes and cofactors. And while the CDC is bound and determined to blame the benign virus, Zika, there are numerous other factors that few are considering – as well as the synergistic effect of all the variables combined. Microcephaly could very well be a perfect storm of events.
https://madisonarealymesupportgroup.com/2016/12/21/how-zika-got-the-blame/https://madisonarealymesupportgroup.com/2016/03/04/health-policy-recap/https://madisonarealymesupportgroup.com/2016/03/08/fixation-on-zikapolio/

I hate bugs as much as the next person, but careful long-term studies of Wolbachia are required here.

https://www.ncbi.nlm.nih.gov/pubmed/20394659  “Despite the intimate association of B. burgdorferi and I. scapularis, the population structure, evolutionary history, and historical biogeography of the pathogen are all contrary to its arthropod vector.

In short, borrelia (as well as numerous pathogens associated with Lyme/MSIDS), is a smart survivor.

While borrelia have been around forever with 300 strains and counting worldwide, epidemics, such as what happened with Lyme Disease in Connecticut are not caused by genetics but by environmental toxins – in this case, bacteria, viruses, funguses, and stuff not even named yet.

Circling back to Wolbachia.

Hopefully it is evident that many man-made interventions have been introduced into the environment causing important health ramifications: Wolbachia laced mosquitoes and eggs, GMO mosquitoes including CRISPR, and in the case of Zika in Brazil, whole-cell pertussis vaccinations (DTap) for pregnant women up to 20 days prior to expected date of birth, a pyriproxyfen based pesticide applied by the State in Brazil on drinking water, as well as aerial sprays of the insect growth regulators Altosid and VectoBac (Aquabac, Teknar, and LarvX, along with 25 other Bti products registered for use in the U.S.) in New York (Brooklyn, Queens, Staten Island, and The Bronx) to combat Zika. “We feel it’s critical that the scientific community consider the potential hazards of all off-target mutations caused by CRISPR, including single nucleotide mutations and mutations in non-coding regions of the genome … Researchers who aren’t using whole genome sequencing to find off-target effects may be missing potentially important mutations. Even a single nucleotide change can have a huge impact.”  http://articles.mercola.com/sites/articles/archive/2017/06/13/crispr-gene-editing-dangers.aspx?utm_source=dnl&utm_medium=email&utm_content=art3&utm_campaign=20170613Z1_UCM&et_cid=DM147520&et_rid=2042753642

All of this is big, BIG business.

Is the introduction of Wolbachia another puzzle piece in the perfect storm of events causing or exacerbating human health issues?

The jury’s still out, but it’s not looking good – particularly for the chronically ill.

Two Deaths From RMSF & Indiana Has TBI’s

https://www.lymedisease.org/tick-related-deaths/

Two deaths from tick-borne Rocky Mountain spotted fever (RMSF) have been reported recently, one a 2-year-old girl in Indiana, and the other a 20-year-old woman in Tennessee. In both cases, the patients were initially diagnosed as having the flu.

In the Indiana case, young Kenley Ratliff developed a high fever about 10 days after her family had returned from a camping trip. She tested positive for strep, and antibiotics were administered. But the fever kept rising over the next several days. By the time doctors suspected RMSF and changed to an appropriate medication, it was too late. More details about Kenley’s case here.

Tennessee health officials confirmed this week that Katie Underhill died from RMSF on May 20. News reports say she battled the disease for five weeks, also after initially being treated for the flu. More details here.

Rocky Mountain spotted fever is caused by the bacterium Rickettsia rickettsii, and is spread to humans by the bite of an infected tick.

Medical experts say RMSF can be fatal within the week, if not treated appropriately. The CDC recommends that doctors administer doxycycline immediately if the disease is suspected, and not wait for confirming lab work.

These cases underscore the need for people to become much more tick-aware when spending time outdoors, and for doctors to consider tick-borne illness as a possibility when patients present with flu-like symptoms in spring and summer.

Read more about rickettsial illnesses here.

Another case of RMSF where the patient survived:  https://www.washingtonpost.com/national/health-science/rocky-mountain-spotted-fever-isnt-limited-to-the-rockies-and-its-deadly/2015/11/16/a447c5a6-531d-11e5-933e-7d06c647a395_story.html?utm_term=.891b5d16b7f8

This Indiana family also shares their story of Lyme Disease.  Four of Five children in the family have LD.  Indiana has LD and RMSF and I’m sure other TBI’s (tick borne illness). Video found here:  http://wishtv.com/2017/05/10/family-shares-story-of-lyme-disease-a-tick-borne-illness/