Pathogenic Mycoplasma Infections in Chronic Illnesses: General Considerations in Selecting Conventional and Integrative Treatments

Author(s)  Garth L. Nicolson
Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, California, USA.


The presence of pathogenic mycoplasmas in various chronic illnesses and their successful suppression using conventional and integrative medicine approaches are reviewed. Evidence gathered over the last three decades has demonstrated the presence of pathogenic mycoplasma species in the blood, body fluids and tissues from patients with a variety of chronic clinical conditions: atypical pneumonia, asthma and other respiratory conditions; oral cavity infections; urogenital conditions; neurodegenerative and neurobehavioral diseases; autoimmune diseases; immunosuppressive diseases; inflammatory diseases; and illnesses and syndromes of unknown origin, such as fatiguing illnesses.
Only recently have these small intracellular bacteria received attention as possible causative agents, cofactors or opportunistic infections or co-infections in these and other conditions. Their clinical management is often inadequate, primarily because of missed diagnosis, under- and inadequate treatment and the presence of persister or dormant microorganisms due to biofilm, resistence and other mechanisms.
Pathogenic Mycoplasma species infections have been suppressed slowly by anti-microbial and integrative treatments, resulting in gradual reductions in morbidity, but not in every patient. Even if mycoplasmas are not a cause or an initial trigger for many chronic illnesses, they appear to play important roles in the inception, progression, morbidity and relapse of chronic illnesses in rather large patient subsets. Ignoring such infections can result in failure to achieve eventual patient recovery, even with application of potentially curative treatments.
As Dr. Breitshwerdt is the Bart Guru, Dr. Nicolson is the Mycoplasma King.  Both are involved intimately with pathogens that have changed their lives.  We owe these men a great debt as without their expertise and fortitude, we would be completely in the dark.  To read about Dr. Nicolson’s experience with bioweaponized Mycoplasma read the provocative book, “Project Daylily.”  I notice that he dedicated this article to his deceased wife who survived a lethal mycoplasma infection.
Please refer to the full-length article in the link at the top of the story but I’ve highlighted a few things below on how Mycoplasma evades the immune system as well as effective treatment.  There’s much, much more in the full-length article you should understand.
According to Dr. Nicolson, 80% of Lyme/MSIDS patients also have Mycoplasma.
CFS/ME patients according to PCR have various mycoplasmas.
Excerpt from section 2 on Host Response Systems:
Pathogenic mycoplasmas can evade immune recognition and destruction by undergoing rapid surface antigenic variations [7] [27]. Even with their slow intracellular growth rates, by rapidly altering their cell surface antigenic structures as well as modulating host immune responses, pathogenic mycoplasmas can evade host surveillance mechanisms [7] [27]. This helps explain the chronic nature of mycoplasmal infections and the inability of hosts to completely suppress pathogenic mycoplasmal infections via host responses that are effective against other more rapidly growing bacteria [27].
Excerpt from 4.12 Fatiguing Illnesses:
The most common fatiguing illness is chronic fatigue syndrome (CFS) or myalgic encephalomyelitis. This is an unexplained, long-term, persistent illness characterized by disabling fatigue plus additional signs and symptoms [98] [99]. Most if not all patients with CFS show evidence of chronic viral and bacterial infections (reviewed in [45] [47] ). In fact, the odds ratio for the presence of chronic infections was calculated to be 18.0 (p < 0.001), suggesting that CFS patients have a very high probability of multiple chronic infections [100]. The most commonly found infections (by PCR of blood monocytes) were various pathogenic species of mycoplasmas [100] [101].  M. pneumoniae was the most common mycoplasma species found, followed by M. fermentans, M. hominis, and M. penetrans [101].
Excerpt from Section 5 Treatment of Pathogenic Mycoplasmal Infections:
In many cases mycoplasmal infections are not the definitive infection that defines the condition. An example of this is chronic Lyme disease, a complex clinical condition with Borrelia species as the prominent infectious agent but with other bacterial, parasite, and viral components as co-infections [47] [119] [120] [121]. Pathogenic mycoplasmal co-infections are important in such multiple infection diseases, being present in up to 80% of chronic Lyme diseases cases [120] [122].
Excerpt from Section 5.1 Antimicrobial Treatments:

The conventional antimicrobial treatments of pathogenic mycoplasmal infections usually involve systemic therapy with oral antibiotics, but the choice of antibiotic(s) depends to a certain degree on the mycoplasma species being treated. Since mycoplasmas do not have a cell wall, antibiotics that act on cell wall synthesis are ineffective [2] [3] [7] [40] [50] [59] [124] [125]. Instead, mycoplasmas are treated with anti-microbials that attack their metabolism, replication, synthetic machinery or other specific bacterial targets. Since most mycoplasmas and ureaplasmas are generally sensitive to tetracyclines (doxycycline, minocycline, among others), with some notable exceptions, these should be considered for frontline treatment, and quinolones (ciprofloxacin, sparfloxacin, levofloxacin, ofloxacin, among others) [125] [126] [127] [128] , as alternative treatment. However, M. pneumoniae and M. genitalium strains are especially sensitive to macrolides (azithromycin, clarithromycin, erythromycin, among others), whereas M. hominis strains are usually resistant [126] [127] [128]. Ureaplasmas are moderately susceptible to macrolides [127] [128]. M. hominis and Ureaplasma urealyticum are generally more resistant to tetracyclines than other species [129] [130] , and M. hominis strains have been observed to be resistant to quinolones [131]. Some discussion of these antimicrobials and their uses in treating pathogenic mycoplasmal infections in chronic illnesses can be found in [132] [133] [134].

Treatment of pathogenic mycoplasma infections with oral antibiotics generally involves daily or pulsed treatment, such as every-other-day administration, at the maximum dose recommended for a particular antibiotic [132] [133] [134] [135]. Due to the cyclic nature of mycoplasmal proliferation some organizations recommend every-other-day antibiotic regimens [135].

Another important consideration is antibiotic resistance, which can occur during treatment [132] [138]. A major problem has been the shifting minimum inhibitory dose concentrations required to treat mycoplasmal infections with antibiotics, such as treatment of M. genitalium infections with oral tetracyclines [139]. This requires increasing dose levels or shifting to a different antibiotic regimen [132].

In most chronic illness patients pathogenic mycoplasma infections do not respond quickly to anti-microbial therapy, so long-term therapy must be considered [123] [132] [133] [135].

When antibiotics are used to treat pathogenic mycoplasmal infections, Jarisch-Herxheimer reactions (J-H reactions) usually occur [132] [141]. These are observed as temporary increases in the severity of signs and symptoms, and J-H reactions generally involve fevers, chills, muscle aches, fatigue, skin rashes, pain and other signs and symptoms related to cytokine release [141].

In most patients this has required prolonged treatments that have resulted in very slow recoveries, often requiring a year or more of treatment [48] [121] [123] [132] [133].

There are some alternative procedures that can increase the in vivo effectiveness of antimicrobial therapies. One method that has been used to increase the effectiveness of antibiotics has been the use of agents that increase the penetrability or the intracellular activities or effectiveness of antibiotics or other drugs. For example, the anti-malarial drug Plaquenil (hydroxychloroquine) has been used to alkalize intracellular compartments and improve antimicrobial entry and cytotoxic effects [121] [132] [145].


For more:, also known as Mono, is an infection that triggers Guillain-Barre as well as mycoplasma and cytomegalovirus.

%d bloggers like this: