Archive for the ‘Ehrlichiosis’ Category

Five Genera of Pathogens Found in Ticks On Russian Dogs

https://www.ncbi.nlm.nih.gov/m/pubmed/30428925/

Dog survey in Russian veterinary hospitals: tick identification and molecular detection of tick-borne pathogens.

Livanova NN, et al. Parasit Vectors. 2018.

Abstract

BACKGROUND: Species of Canidae in Russia can be infested with up to 24 different tick species; however, the frequency of different tick species infesting domestic dogs across Russia is not known. In addition, tick-borne disease risks for domestic dogs in Russia are not well quantified. The goal of this study was to conduct a nationwide survey of ticks collected from infested dogs admitted to veterinary clinics in Russian cities and to identify pathogens found in these ticks.

METHODS: Ticks feeding on dogs admitted to 32 veterinary clinics in 27 major cities across Russia were preserved in ethanol and submitted to a central facility for examination. After identification, each tick was evaluated for infection with known tick-borne pathogens using PCR.

RESULTS: There were 990 individual ticks collected from 636 dogs. All collected ticks belonged to the Ixodidae (hard ticks) and represented 11 species of four genera, Dermacentor, Ixodes, Rhipicephalus and Haemaphysalis. Four most common tick species were D. reticulatus, followed by I. persulcatus, I. ricinus and R. sanguineus. Ixodes persulcatus ticks were found to be infected with 10 different pathogens, and ticks of this species were more frequently infected than either D. reticulatus or I. ricinus. Ixodes persulcatus females were also more frequently co-infected with two or more pathogens than any other tick.

Pathogenic species of five genera were detected in ticks:

  • Anaplasma centrale, A. phagocytophilum & A. marginale (Anaplasma)
  • Babesia canis, B. microti, B. venatorum, B. divergens, B. crassa & B. vogeli (Babesia)
  • Borrelia miyamotoi, B. afzelii and B. garinii (Borrelia)
  • Ehrlichia muris, E. canis and E. ruminantu (Ehrlichia)
  • Theileria cervi (Theileria – a parasitic protozoan)
Anaplasma marginale, E. canis, B. crassa, B. vogeli and T. cervi were detected in I. persulcatus, and Babesia canis in D. marginatum, for the first time in Russia.

CONCLUSIONS: Multiple ticks from four genera and 11 species of the family Ixodidae were collected from domestic dogs across Russia. These ticks commonly carry pathogens and act as disease vectors. Ixodes persulcatus ticks present the greatest risk for transmission of multiple arthropod-borne pathogens.

_________________

**Comment**

It’s getting harder and harder for The Cabal to hide the polymicrobial nature of Lyme/MSIDS.  The data just keeps pouring in:  https://madisonarealymesupportgroup.com/2018/10/30/study-shows-lyme-msids-patients-infected-with-many-pathogens-and-explains-why-we-are-so-sick/

For the first time, Garg et al. show a 85% probability for multiple infections including not only tick-borne pathogens but also opportunistic microbes such as EBV and other viruses.

I’m thankful they included Bartonella as that one is often omitted but definitely a player. I’m also thankful for the mention of viruses as they too are in the mix. The mention of the persister form must be recognized as well as many out there deny its existence.

Key Quote: “Our findings recognize that microbial infections in patients suffering from TBDs do not follow the one microbe, one disease Germ Theory as 65% of the TBD patients produce immune responses to various microbes.”

But there is another important point.

According to this review, 83% of all commercial tests focus only on Lyme (borrelia), despite the fact we are infected with more than one microbe.

And those tests miss half of all cases:  

https://madisonarealymesupportgroup.com/2018/09/12/lyme-testing-problems-solutions/  ...with the C6 Elisa its around 50% sensitive (in the context of the two tiered testing system on its own it has a sensitivity of 75%) because it misses about half of true positive cases….The Western Blot also has many problems with sensitivity at all stages but especially within the first month and again later on the more chronic it becomes.If you take the terrible sensitivity of both tests in the two tiered system you will start to see how testing positive consecutively on both is very unlikely, mathematically improbable and biologically almost impossible unless you are in the HLA autoimmune group which is comparatively rare.

https://madisonarealymesupportgroup.com/2018/01/16/2-tier-lyme-testing-missed-85-7-of-patients-milford-hospital/  Dr. Sin Lee identifying faulty serology tests for Lyme disease in 85.7% of the walk-in patients in the Emergency Room of Milford Hospital.

Please note that all the studies showing the polymicrobial nature of tick borne illness  are foreign.

The Cabal has everyone in the U.S. in a head-lock.

Will the real researchers please stand up and be counted?

 

 

 

 

 

 

 

 

 

Gestational Lyme & Other Tick-borne Diseases – Dr. Jones

Dr. Charles Ray Jones – Rock Star

FB_IMG_1541741969447From left, Sherry Sievewright, Wisconsin Lyme Network, Dr. Charles Ray Jones, Alicia Cashman, Madison Lyme Support Group

Dr. Charles Ray Jones specializes in treating Lyme/MSIDS patients.  He has treated over 12,000 children with Lyme/MSIDS, and spoke recently at the Chicago ILADS convention.

Here is the executive summary of his presentation:

  • Borrelia burgdorferi (Bb) can be transmitted via ticks, gestationally, breast milk, and semen (yes, that means sexually).  While there isn’t a large NIH double-blind study, clinically LLMD’s are finding infected couples.  For more data on animals:  https://madisonarealymesupportgroup.com/2017/02/24/pcos-lyme-my-story/  (Scroll down to info on sexual transmission)

 

  • Gustafason & Burgess demonstrated gestational Bb infection in dogs.  Of the inoculated bitches, 80% became infected who then birthed mostly infected pups.1

 

  • A retrospective study showed 480 children with gestational Lyme/MSIDS. Diagnosis was based on clinical physical and history. 3

 

  • About 10% of Dr. Jones’ patients are infected gestationally.

 

  • Two cases of in vitro fertilization caused embryonic infection.

 

  • Mothers not treated resulted in 50% gestational transmission compared to mothers treated with 1 antibiotic resulting in a 25% transmission.  70% of infected mothers reported a difficult pregnancy.  ALL children improved with appropriate antibiotic treatment.  

 

  • Antibiotic treatment for Pregnant mothers:
  1. Amoxil 1000mg every 8 hours
  2. Ceftin 500 mg every 12 hours
  3. Omnicef 300 mg-600mg twice daily
  4. Mepron 750mg twice daily
  5. Zithromax 500mg twice daily
  • Other options for those who can not tolerate oral antibiotics:
  1. Bicillin 1.2 million units IM 1-3 times weekly
  2. Ceftiaxone 2 gms IV daily
  3. Cefotaxime 6 gms daily either continuous infusions or 2gms IV every 8 hours
  • Top 6 gestational Lyme symptoms:
  1. 90% low muscle tone (delays in motor skills, excess flexibility, drooling)
  2. 80% irritability (impulsive, risky behavior, interrupts, anger/mood swings)
  3. 72% fatigue
  4. 69% pain
  5. 60% low grade fevers with pale skin & dark circles under eyes
  6. 50% painful joints with stiffness & decreased range of motion
  • Coinfection rate found in study.3
  1. 30% Bartonella
  2. 20% Babesia
  3. 7% Strep
  4. 6% Ehrlichiosis
  5. 5% Leptospirosis
  • Male Child Case Study Findings.  Daily fevers between 101-102 degrees with severe joint pain, could not process stimuli, and poor muscle control.  Mother was infected with Bb during pregnancy and child had numerous tick bites.  Was initially diagnosed with a virus and was told he’d “grow out of it.”  Grandparents in desperation hired a priest to exorcise him.  Within 3 months of a clinical diagnosis of Bb (Western Blot positive) and multiple TBI’s (Babesia, Bartonella, Mycoplasma) and appropriate antibiotic treatment, he was doing well in school & athletics, and improved on all perimeters.  Treatment is ongoing.

 

  • Gestational treatment options:
  1. Combination of penicillin, cephalosporins, macrocodes, atovaquone (tetracycline, doxycyline & minocycline not usually used in those under 8) 

 

  • A 1995 study by Gardner showed 15% abnormal babies in treated mothers vs 67% of abnormal babies in mothers not treated.4

 

  • A 1989 study by MacDonald showed the following Lyme infection outcomes during pregnancy.5
  1. prematurity
  2. fluid in the brain
  3. blindness
  4. Sudden infant death syndrome
  5. blood infection
  6. Fetal death
  7. cardiovascular system anomalies
  8. growth retardation
  9. respiratory distress
  10. excess of bilirubin in the blood

References:

  1. Gustafson, J.M., E.C Burgess, et al.(1993). “Intrauterine transmission of Borrelia burgdorferi in dogs. “Am J Vet Res 54(6): 882-890
  2.  Xiao, J., et al. 2011. “How Different Strains of Parasite Infection Affect Behavior Differently”. Infection and Immunity. March 2011 . Quoted in science daily, March 22, 2011.
  3.  Jones, Charles Ray, Smith, Harold, Gibb, Edina and Johnson, Lorraine JD, MBA, “Gestational Lyme Disease Case Studies of 102 Live Births, Lyme Times, 2005”. 
  4. Gardner, T. (1995). Lyme disease. Infectious disease of the fetus and newborn infant. J. S Remington and J.O Klein. Philadelphia, Saunders. Chapter 11:447- 528. 
  5. MacDonald, A.B. (1989) “Gestational Lyme Borreliosis. Implications for the fetus. “Rheum Dis Clin North Amer 15(4): 657-677. 
  6. Goldenberg, R.L and C. Thompson (2003) “The infectious origin of stillbirth”. Am J Obstet Gynecol 189(#): 861-873.

____________________

More on Pregnancy with Lyme/MSIDS:

https://madisonarealymesupportgroup.com/2018/06/19/33-years-of-documentation-of-maternal-child-transmission-of-lyme-disease-and-congenital-lyme-borreliosis-a-review/

https://madisonarealymesupportgroup.com/2018/05/24/new-berlin-mom-given-life-altering-lyme-disease-diagnoses-after-pregnancy/

https://madisonarealymesupportgroup.com/2017/10/15/pregnancy-in-lyme-dr-ann-corson/

https://madisonarealymesupportgroup.com/2018/07/24/congenital-transmission-of-lyme-myth-or-reality/

https://madisonarealymesupportgroup.com/2018/02/26/transplacental-transmission-fetal-damage-with-lyme-disease/  (Great videos here)

https://www.lymedisease.org/lyme-basics/lyme-disease/children/  Great read on Lyme/MSIDS in children.

https://www.lymedisease.org/wp-content/uploads/2014/08/Image15-Jones-ABT.pdf  “Rationale for Prolonged Antibiotic Therapy in Treating Lyme Disease.”  By Charles Ray Jones, M.D.

Zoonotic Implications of Changing Tick Populations

https://www.americanveterinarian.com/news/zoonotic-implications-of-changing-tick-populations

October 25, 2018

Zoonotic Implications of Changing Tick Populations

As environmental changes allow tick populations to spread, the zoonotic risk of tickborne diseases increases.

By Kate Boatright, VMD

Between 1940 and 2004, the majority of emerging human infectious diseases worldwide were zoonotic. Of these, nearly one-quarter were arthropod vector-borne diseases, with ticks being the most common vector. In the United States, tickborne diseases account for about 95% of vector-borne diseases.

A recent review article in Veterinary Sciences examined many factors of tick biology, including the changing geographic distribution of tick populations and the impact of this change on associated tickborne diseases.

Ixodes Ticks and Associated Pathogens

Ixodid ticks exist worldwide. Warmer temperatures and changing humidity have allowed for northern expansion in North America, Europe, and Russia. Many significant zoonotic pathogens are carried by these ticks:

  • Borrelia burgdorferi, the causative agent of Lyme disease, is now seen throughout the United States, Canada, and Europe.
  • New Borrelia species identified worldwide have been implicated as additional causative agents of Lyme disease (Borrelia mayonii) and a relapsing fever (Borrelia miyamotoi).
  • Babesiosis, caused by over 100 different Babesia species, is especially significant for cattle and humans. Human babesiosis cases are expected to be seen in Canada due to the increased number of Ixodes scapularis ticks, and new Babesia species are now seen in regions not previously known to have babesiosis.
  • Anaplasma phagocytophilum is the causative agent of human granulocytic anaplasmosis (HGA), equine anaplasmosis, and febrile diseases in ruminants, cats, and dogs. Reports of HGA in the United States increased by a factor of 12 between 2001 and 2011.
  • Co-infections are common in individuals exhibiting disease from an Ixodes tick vector. Ten percent of individuals infected with Anaplasma also had antibodies to B burgdorferi or Babesia microti.
Ambylomma Ticks and Ehrlichia

In the United States, Amblyomma americanum ticks have expanded both north and west as white-tailed deer populations have increased in these regions. All life stages of this tick species can feed on humans and deer, increasing the potential for transmission of Ehrlichia chaffeensis and Ehrlichia ewingii, the most common causes of human monocytic ehrlichiosis.

In the rest of the world, other Amblyomma ticks serve as vectors for multiple species of Ehrlichia, including new genetic variants classified as Candidatus Neoehrlichia species in Europe and Asia. For veterinarians, heartwater disease, caused by Ehrlichia ruminantium, is an increasingly important reportable disease of ruminants in Africa and the Caribbean.

Viral Vector-Borne Diseases

Vector-borne viruses are another emerging global zoonotic threat. Many tick species carry viruses of increasing public health importance:

  • Rhipicephalus microplus and Haemaphysalis longicornis ticks in China and Amblyomma americanum in the United States are known vectors of closely related viruses causing severe fever and thrombocytopenia. In the United States, this virus is known as heartland virus.
  • Bourbon virus was recently discovered in the United States.
  • Powassan virus is reemerging in North America.
  • Tickborne encephalitis viruses are broadening in range throughout Europe as reforestation and movement of dogs allows the range of their vector, Dermacentor reticulatus, to expand into Germany, the Netherlands, and Poland.
  • Crimean-Congo hemorrhagic fever virus is spreading to multiple countries in the Mediterranean, likely due to the transportation of its tick vector, Hyalomma marginatum, by birds from Africa, Asia, and Eastern Europe to Central Europe.
Take-Home Message

Practitioners in both veterinary and human medicine must remain aware of the changing geography of ticks and associated vector-borne diseases. The discovery of the Asian tick H longicornis in New Jersey and Virginia should be an important reminder of the fact that

“ticks and tickborne pathogens do not recognize international boundaries.”

Thus, “a robust international disease monitoring network” is needed to protect both human and animal health from both known and emerging tick-borne diseases.
Dr. Boatright, a 2013 graduate of the University of Pennsylvania, is an associate veterinarian in western Pennsylvania. She is actively involved in her state and local veterinary medical associations and is a former national officer of the Veterinary Business Management Association.

________________

**Comment**

Independent Canadian tick researcher states it’s migrating birds and photoperiod allowing tick populations to spread, not climate issues:  https://madisonarealymesupportgroup.com/2018/08/13/study-shows-lyme-not-propelled-by-climate-change/

This groundbreaking study:  https://madisonarealymesupportgroup.com/2018/10/30/study-shows-lyme-msids-patients-infected-with-many-pathogens-and-explains-why-we-are-so-sick/ shows a 85% probability for multiple infections in patients suffering from tick borne disease, including not only tick-borne pathogens but also opportunistic microbes such as EBV and other viruses.

Key Quote:

“Our findings recognize that microbial infections in patients suffering from TBDs do not follow the one microbe, one disease Germ Theory as 65% of the TBD patients produce immune responses to various microbes.”

Eighty three percent of all commercial tests focus only on Lyme (borrelia), despite the fact we are infected with more than one microbe. It takes 11 different visits to 11 different doctors, utilizing 11 different tests to be properly diagnosed. https://www.news-medical.net/news/20181101/Tick-borne-disease-is-multiple-microbial-in-nature.aspx?

Time for things to change.

 

 

Hawk Found Carrying Asian Long-horned Tick – the One that Drains Cattle of all Their Blood

https://www.localdvm.com/news/virginia/virginia-hawk-first-bird-in-north-america-found-carrying-invasive-tick/1560920669  (News story found here)

It’s confirmed.  The tick from hell has been found on a hawk in Virginia.  

This Asian “dracula” tick causes SFTS (severe fever with thrombocytopenia syndrome), “an emerging hemorrhagic fever,” causing  fever, fatigue, headache, nausea, muscle pain, diarrhea, vomiting, abdominal pain, disease of the lymph nodes, and conjunctival congestion, but the potential impact of this tick on tickborne illness is not yet known. In other parts of the world, this Longhorned tick, also called the East Asian or bush tick, and has been associated with several tickborne diseases, such as spotted fever rickettsioses, Anaplasma, Ehrlichia, and Borrelia, the causative agent of Lyme Disease.  https://madisonarealymesupportgroup.com/2018/06/12/first-longhorned-tick-confirmed-in-arkansas/

Main concerns:

  1. IT CLONES ITSELF & MULTIPLIES QUICKLY…..
  2. It can drain cattle of their blood: https://madisonarealymesupportgroup.com/2018/03/12/asian-tick-found-in-new-jersey-can-kill-cattle-by-draining-them-of-blood/
  3. It’s been known to cause disease in Asia
  4. A top ecologist wonders if infection by this tick has gone undetected in the past.
  5. There isn’t a systematic national method to look for invasive ticks.
  6. It’s quickly showing up in other states: https://madisonarealymesupportgroup.com/2018/05/26/tick-from-hell-now-sited-in-west-virginia/
  7. It survives cold temps: https://madisonarealymesupportgroup.com/2018/04/21/ticks-from-hell-survived-the-winter/ (Again, the spread if ticks and infection has ZIPPO to do with climate change)

https://madisonarealymesupportgroup.com/2018/09/12/three-surprising-things-i-learned-about-asian-longhorned-ticks-the-tick-guy-tom-mather/  Tick guy, Tom Mather, found that this particular tick, which reproduces by cloning itself, lines up on a single blade of grass motionless, tightly knitted together like the scales on a snake.  Once they found one glad of grass like this, they started seeing this every couple of feet.  He quickly realized this is NOT a rare tick.

LIKE A BOMB, THEY EXPLODE WHEN SOMETHING BRUSHES BY.

three_surprising_4.png

https://madisonarealymesupportgroup.com/2018/07/19/rutgers-racing-to-contain-asian-longhorned-tick/

https://madisonarealymesupportgroup.com/2017/08/17/of-birds-and-ticks/

https://madisonarealymesupportgroup.com/2018/06/08/hemorrhagic-fever-virus-found-on-ticks-on-migratory-birds/

https://madisonarealymesupportgroup.com/2016/10/02/the-role-of-birds-in-tickborne-illness/

Study Shows Lyme/MSIDS Patients Infected With Many Pathogens and Explains Why We Are So Sick

https://www.nature.com/articles/s41598-018-34393-9?fbclid=IwAR3k-zPy2rJu8OuFl3HHqJ0twLPJvQrxiIUALUs0T-BuuJ50_1VQVwcflIQ (Please see comment at end of article)

Evaluating polymicrobial immune responses in patients suffering from tick-borne diseases

Kunal Garg, Leena Meriläinen, Ole Franz, Heidi Pirttinen, Marco Quevedo-Diaz, Stephen Croucher & Leona Gilbert
Scientific Reportsvolume 8, Article number: 15932 (2018)   https://doi.org/10.1038/s41598-018-34393-9

Abstract
There is insufficient evidence to support screening of various tick-borne diseases (TBD) related microbes alongside Borrelia in patients suffering from TBD. To evaluate the involvement of multiple microbial immune responses in patients experiencing TBD we utilized enzyme-linked immunosorbent assay. Four hundred and thirty-two human serum samples organized into seven categories followed Centers for Disease Control and Prevention two-tier Lyme disease (LD) diagnosis guidelines and Infectious Disease Society of America guidelines for post-treatment Lyme disease syndrome. All patient categories were tested for their immunoglobulin M (IgM) and G (IgG) responses against 20 microbes associated with TBD. Our findings recognize that microbial infections in patients suffering from TBDs do not follow the one microbe, one disease Germ Theory as 65% of the TBD patients produce immune responses to various microbes. We have established a causal association between TBD patients and TBD associated co-infections and essential opportunistic microbes following Bradford Hill’s criteria. This study indicated an 85% probability that a randomly selected TBD patient will respond to Borrelia and other related TBD microbes rather than to Borrelia alone.

A paradigm shift is required in current healthcare policies to diagnose TBD so that patients can get tested and treated even for opportunistic infections.
Please see link for full article.  Snippets below:

Introduction
Tick-borne diseases (TBDs) have become a global public health challenge and will affect over 35% of the global population by 20501. The most common tick-borne bacteria are from the Borrelia burgdorferi sensu lato (s.l.) group. However, ticks can also transmit co-infections like Babesia spp.2, Bartonella spp.3, Brucella spp.4,5,6,7,8, Ehrlichia spp.9, Rickettsia spp.10,11, and tick-borne encephalitis virus12,13,14. In Europe and North America, 4–60% of patients with Lyme disease (LD) were co-infected with Babesia, Anaplasma, or Rickettsia11,15,16. Evidence from mouse and human studies indicate that pathogenesis by various tick-borne associated microbes15,16,17 may cause immune dysfunction and alter, enhance the severity, or suppress the course of infection due to the increased microbial burden18,19,20,21,22. As a consequence of extensive exposure to tick-borne infections15,16,17, patients may develop a weakened immune system22,23, and present evidence of opportunistic infections such as Chlamydia spp.24,25,26,27, Coxsackievirus28, Cytomegalovirus29, Epstein-Barr virus27,29, Human parvovirus B1924, and Mycoplasma spp.30,31. In addition to tick-borne co-infections and non-tick-borne opportunistic infections, pleomorphic Borrelia persistent forms may induce distinct immune responses in patients by having different antigenic properties compared to typical spirochetes32,33,34,35. Nonetheless, current LD diagnostic tools do not include Borrelia persistent forms, tick-borne co-infections, and non-tick-borne opportunistic infections.

The two-tier guidelines36,37,38 for diagnosing LD by the Centers for Disease Control and Prevention (CDC) have been challenged due to the omission of co-infections and non-tick-borne opportunistic infections crucial for comprehensive diagnosis and treatment39,40. Emerging diagnostic solutions have demonstrated the usefulness of multiplex assays to test for LD and tick-borne co-infections41,42. However, these new technologies do not address seroprevalence of non-tick-borne opportunistic infections in patients suffering from TBD and they are limited to certain co-infections41,42. Non-tick-borne opportunistic microbes can manifest an array of symptoms24,29 concerning the heart, kidney, musculoskeletal, and the central nervous system as seen in patients with Lyme related carditis43, nephritis44, arthritis45, and neuropathy46, respectively. Therefore, Chlamydia spp., Coxsackievirus, Cytomegalovirus, Epstein-Barr virus, Human parvovirus B19, Mycoplasma spp., and other non-tick-borne opportunistic microbes play an important role in the differential diagnosis of LD24,29. As the current knowledge regarding non-tick-borne opportunistic microbes is limited to their use in differential diagnosis of LD, it is unclear if LD patients can present both tick-borne co-infections and non-tick-borne opportunistic infections simultaneously.

For the first time, we evaluate the involvement of Borrelia spirochetes, Borrelia persistent forms, tick-borne co-infections, and non-tick-borne opportunistic microbes together in patients suffering from different stages of TBD. To highlight the need for multiplex TBD assays in clinical laboratories, we utilized the Bradford Hill’s causal inference criteria47 to elucidate the likelihood and plausibility of TBD patients responding to multiple microbes rather than one microbe. The goal of this study is to advocate screening for various TBD microbes including non-tick-borne opportunistic microbes to decrease the rate of misdiagnosed or undiagnosed48 cases thereby increasing the health-related quality of life for the patients39, and ultimately influencing new treatment protocol for TBDs.

Results
Positive IgM and IgG responses by CDC defined acute, CDC late, CDC negative, PTLDS immunocompromised, and unspecific patients to 20 microbes associated with TBD (Fig. 1) were utilized to evaluate polymicrobial infections (Figs 2–4). Patient categories included CDC acute (n = 43), CDC late (n = 43), CDC negative (n = 46), PTLDS (n = 31), immunocompromised (n = 61), unspecific (n = 31), and healthy (n = 177).

Polymicrobial infections are present at all stages of tick-borne diseases.

Microbes include Borrelia burgdorferi sensu stricto, Borrelia afzelii, Borrelia garinii, Borrelia burgdorferi sensu stricto persistent form, Borrelia afzelii persistent form, Borrelia garinii persistent form, Babesia microti, Bartonella henselae, Brucella abortus, Ehrlichia chaffeensis, Rickettsia akari, Tick-borne encephalitis virus (TBEV), Chlamydia pneumoniae, Chlamydia trachomatis, Coxsackievirus A16 (CVA16), Cytomegalovirus (CMV), Epstein-Barr virus (EBV), Mycoplasma pneumoniae, Mycoplasma fermentans, and Human parvovirus B19 (HB19V).

In Fig. 2A, 51% and 65% of patients had IgM and IgG responses to more than one microbe, whereas 9% and 16% of patients had IgM and IgG responses to only one microbe, respectively. Immune responses to Borrelia persistent forms (all three species) for IgM and IgG were 5–10% higher compared to Borrelia spirochetes in all three species (Fig. 2B). Interestingly, the probability that a randomly selected patient will respond to Borrelia persistent forms rather than the Borrelia spirochetes (Fig. S2) is 80% (d = 1.2) for IgM and 68% for IgG (d = 0.7). Figure 2A and B indicated that IgM and IgG responses by patients from different stages of TBDs are not limited to only Borrelia spirochetes.

In Fig. 3 sub-inlets, more than 50% of the patients reacted to only the individual Borrelia strains suggesting that Borrelia antigens are not cross-reactive. If patients were cross-reacting among antigens, a larger percentage of the patients would be seen with the combination of all three species (Fig. S2). These results provide evidence to suggest that the inclusion of different Borrelia species and their morphologies in current LD diagnostic tools will improve its efficiency.

Discussions
The study outcome indicated that polymicrobial infections existed at all stages of TBD with IgM and IgG responses to several microbes (Fig. 2). Results presented in this study propose that infections in patients suffering from TBDs do not obey the one microbe one disease Germ Theory. Based on these results and substantial literature11,15,16,17,27,49,50,51 on polymicrobial infections in TBD patients, we examined the probability of a causal relationship between TBD patients and polymicrobial infections following Hill’s nine criteria47.

An average effect size of d = 1.5 for IgM and IgG (Fig. 4A) responses is considered very large52. According to common language effect size statistics53, d = 1.5 indicates 85% probability that a randomly selected patient will respond to Borrelia and other TBD microbes rather than to only Borrelia. Reports from countries such as Australia27, Germany49, Netherlands11, Sweden50, the United Kingdom51, the USA15,16, and others indicate that 4% to 60% of patients suffer from LD and other microbes such as Babesia microti and human granulocytic anaplasmosis (HGA). However, previous findings11,15,16,27,49,50,51 are limited to co-infections (i.e., Babesia, Bartonella, Ehrlichia, or Rickettsia species) in patients experiencing a particular stage of LD (such as Erythema migrans). In contrast, a broader spectrum of persistent, co-infections, and opportunistic infections associated with diverse stages of TBD patients have been demonstrated in this study (Fig. 2). From a clinical standpoint, the likelihood for IgM and IgG immune responses by TBD patients to the Borrelia spirochetes versus the Borrelia persistent forms, and responses to just Borrelia versus Borrelia with many other TBD microbes has been quantified for the first time (Fig. S2).

Borrelia pathogenesis could predispose individuals to polymicrobial infections because it can suppress, subvert, or modulate the host’s immune system18,19,20,21,22 to create a niche for colonization by other microbes54. Evidence in animals55 and humans11,15,16,27,49,50,51 frequently indicate co-existence of Borrelia with other TBD associated infections. Interestingly, IgM and IgG immune levels by patients to multiple forms of Borrelia resulted in immune responses to 14 other TBD microbes (Fig. 4B). In contrast, patient responses to either form of Borrelia (spirochetes or persistent forms) resulted in reactions to an average of 8 other TBD microbes (Fig. 4B). Reaction to two forms of Borrelia reflected an increase in disease severity indicating biological gradient for causation as required by Hill’s criteria47.

Multiple microbial infections in TBD patients seem plausible because ticks can carry more than eight different microbes depending on tick species and geography56,57. Moreover, Qiu and colleagues reported the presence of at least 18 bacterial genera shared among three different tick species and up to 127 bacterial genera in Ixodes persulcatus58. Interestingly, research indicates Chlamydia-like organism in Ixodes ricinus ticks and human skin59 that may explain immune responses to Chlamydia spp., seen in this study (Fig. 2). Additionally, prevalence of TBD associated co-infections such as B. abortus, E. chaffeensis, and opportunistic microbes such as C. pneumoniae, C. trachomatis, Cytomegalovirus, Epstein-Barr virus, and M. pneumoniae have been recorded in the general population of Europe and the USA (Table S2). However, true incidence of these microbes is likely to be higher considering underreporting due to asymptomatic infections and differences in diagnostic practices and surveillance systems across Europe and in the USA. More importantly, clinical evidence for multiple microbes has been reported in humans11,15,16,27,49,50,51, and livestock55 to mention the least. Our findings regarding the presence of polymicrobial infections at all stages of TBD further supports the causal relationship between TBD patients and polymicrobial infections (Fig. 2). Various microbial infections in TBD patients have been linked to the reduced health-related quality of life (HRQoL) and increased disease severity39.

An association between multiple infections and TBD patients relates well to other diseases such as periodontal, and respiratory tract diseases. Oral cavities may contain viruses and 500 different bacterial species60. Our findings demonstrate that TBD patients may suffer from multiple bacterial and viral infections (Fig. 4). In respiratory tract diseases, influenza virus can stimulate immunosuppression and predispose patients to bacterial infections causing an increase in disease severity61. Likewise, Borrelia can induce immunosuppression that may predispose patients to other microbial infections causing an increase in disease severity.

Traditionally, positive IgM immune reaction implies an acute infection, and IgG response portrays a dissemination, persistent or memory immunity due to past infections. Depending on when TBD patients seek medical advice, the level of anti-Borrelia antibodies can greatly vary as an Erythema migrans (EM) develops and may present with IgM, IgG, collective IgM/IgG, or IgA62. This study recommends both IgM and IgG in diagnosing TBD (Figs 5 and S4–S6) as unconventional antibody profiles have been portrayed in TBD patients. Presence of long-term IgM and IgG antibodies have been reported in LD patients that were tested by the CDC two-tier system. In 2001, Kalish and colleagues reported anti-Borrelia IgM or IgG persistence in patients that suffered from LD 10–20 years ago63. Similarly, Hilton and co-workers recorded persistent anti-Borrelia IgM response in 97% of late LD patients that were considered cured following an antibiotic treatment64.

Similar events of persistent IgM and IgG antibody reactions were demonstrated in patients treated for Borrelia arthritis and acrodermatitis chronica atrophicans65, chronic cutaneous borreliosis66, and Lyme neuroborreliosis67. A clear phenomenon of immune dysfunction is occurring, which might account for the disparities in LD patient’s antibody profiles and persistence. Borrelia suppresses the immune system by inhibition of antigen-induced lymphocyte proliferation18, reducing Langerhans cells by downregulation of major histocompatibility complex class II molecules on these cells19, stimulating the production of interleukin-10 and anti-inflammatory immunosuppressive cytokine20, and causing disparity in regulation and secretion of cytokines21. Other studies have demonstrated low production or subversion of specific anti-Borrelia antibodies in patients with immune deficiency status22.

In the USA alone, the economic healthcare burden for patients suffering from LD and ongoing symptoms is estimated to be $1.3 billion per year69. Additionally, 83% of all TBD diagnostic tests performed by the commercial laboratories in the USA accounted for only LD70. Globally, the commercial laboratories’ ability to diagnose LD has increased by merely 4% (weighted mean for ELISA sensitivity 62.3%) in the last 20 years71. This study provides evidence regarding polymicrobial infections in patients suffering from different stages of TBDs. Literature analyses and results from this study followed Hill’s criteria indicating a causal association between TBD patients and polymicrobial infections. Also, the study outcomes indicate that patients may not adhere to traditional IgM and IgG responses.

__________________

**Comment**

For the first time, Garg et al. show a 85% probability for multiple infections including not only tick-borne pathogens but also opportunistic microbes such as EBV and other viruses.

I’m thankful they included Bartonella as that one is often omitted but definitely a player.  I’m also thankful for the mention of viruses as they too are in the mix.  The mention of the persister form must be recognized as well as many out there deny its existence.

Key Quote:  Our findings recognize that microbial infections in patients suffering from TBDs do not follow the one microbe, one disease Germ Theory as 65% of the TBD patients produce immune responses to various microbes.”

But there is another important point.

According to this review, 83% of all commercial tests focus only on Lyme (borrelia), despite the fact we are infected with more than one microbe.  The review also states it takes 11 different visits to 11 different doctors, utilizing 11 different tests to be properly diagnosed.  https://www.news-medical.net/news/20181101/Tick-borne-disease-is-multiple-microbial-in-nature.aspx?

This is huge.  Please spread the word.

 

Tick, Flea, & Louse-Borne Diseases of Public Health & Veterinary Significance in Nigeria

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6136614/

Tick, Flea, and Louse-Borne Diseases of Public Health and Veterinary Significance in Nigeria

Abstract

Mosquito-borne diseases are common high-impact diseases in tropical and subtropical areas. However, other non-mosquito vector-borne pathogens (VBPs) may share their geographic distribution, seasonality, and clinical manifestations, thereby contributing their share to the morbidity and mortality caused by febrile illnesses in these regions. The purpose of this work was to collect and review existing information and identify knowledge gaps about tick, flea-, and louse-borne diseases of veterinary and public health significance in Nigeria. Full-length articles about VBPs were reviewed and relevant information about the vectors, their hosts, geographic distribution, seasonality, and association(s) with human or veterinary diseases was extracted. Specific laboratory tools used for detection and identification of VBPs in Nigeria were also identified. A total of 62 original publications were examined. Substantial information about the prevalence and impacts of ticks and fleas on pet and service dogs (18 articles), and livestock animals (23 articles) were available; however, information about their association with and potential for causing human illnesses was largely absent despite the zoonotic nature of many of these peri-domestic veterinary diseases.

Recent publications that employed molecular methods of detection demonstrated the occurrence of several classic (Ehrlichia canis, Rickettsia africae, Bartonella sp.) and emerging human pathogens (R. aeschlimannii, Neoehrlichia mikurensis) in ticks and fleas. However, information about other pathogens often found in association with ticks (R. conorii) and fleas (R. typhi, R. felis) across the African continent was lacking. Records of louse-borne epidemic typhus in Nigeria date to 1947; however, its current status is not known. This review provides an essential baseline summary of the current knowledge in Nigeria of non-mosquito VBPs, and should stimulate improvements in the surveillance of the veterinary and human diseases they cause in Nigeria. Due to increasing recognition of these diseases in other African countries, veterinary and public health professionals in Nigeria should expand the list of possible diseases considered in patients presenting with fever of unknown etiology.

____________________

**Comment**

I find it increasingly interesting that everyone’s picking up Bartonella, yet it’s hardly on the radar here despite thousands of Lyme/MSIDS patients having symptoms of it.  Bartonella is a tough pathogen & can be the guy behind so many psychiatric issues as well as heart issues.

We need to know for certain ticks can transmit it because if they don’t, either the tick bite itself is reactivating a latent infection or we are coming by it another way.  One thing’s for certain:  it needs to be dealt with on the research front as well as on the medical front.

For more on Bartonella:  https://madisonarealymesupportgroup.com/2016/01/03/bartonella-treatment/

https://madisonarealymesupportgroup.com/2018/10/02/1st-documented-case-of-girl-with-blood-stream-infection-with-bartonella-with-coinfection-of-another-bartonella-strain/

https://madisonarealymesupportgroup.com/2018/10/02/bartonella-found-in-deer-flies-deer-moose/

https://madisonarealymesupportgroup.com/2018/09/28/bartonella-infective-endocarditis-with-dissemination-a-case-report-literature-review/

https://madisonarealymesupportgroup.com/2016/08/09/a-bartonella-story/

For a great read on how those working with animals are especially vulnerable to Bartonella:  https://madisonarealymesupportgroup.com/2018/09/20/humana-bartonellosis-perspectives-of-a-veterinary-internist/

Excerpt:

 

Due to extensive contact with a spectrum of animal species, veterinary professionals appear to have an occupational risk of infection because of frequent exposure to Bartonella spp., therefore these individuals should exercise increased precautions to avoid arthropod bites, arthropod feces (i.e. fleas and lice), animal bites or scratches and direct contact with bodily fluids from sick animals. As Bartonella spp. have been isolated from cat, dog or human blood, cerebrospinal fluid, joint fluid,aqueous fluid, seroma fluid and from pleural, pericardial and abdominal effusions, a substantial number of diagnostic biological samples collected on a daily basis in veterinary practices could contain viable bacteria.
The increasing number of defined Bartonella spp., in conjunction with the high level of bacteremia found in reservoir adapted hosts, which represent the veterinary patient population, ensures that all veterinary professionals will experience frequent and repeated exposure to animals harboring these bacteria. Therefore, personal protective equipment, frequent hand washing and avoiding cuts and needle sticks have become more important as our knowledge of this genus has improved and various modes of transmission have been defined.
Physicians should be educated as to the large number of Bartonella spp. in nature, the extensive spectrum of animal reservoir hosts, the diversity of confirmed and potential arthropod vectors, current limitations associated with diagnosis and treatment efficacy, and the ecological and evolving medical complexity of these highly evolved intravascular, endotheliotropic bacteria.

Study Finds Q Fever & Rickettsia (Typhus) in Australian Ticks and People

https://www.ncbi.nlm.nih.gov/m/pubmed/30270855/

Ixodes holocyclus Tick-Transmitted Human Pathogens in North-Eastern New South Wales, Australia.

Graves SR, et al. Trop Med Infect Dis. 2016.

Abstract

A group of 14 persons who live in an area of Australia endemic for the Australian paralysis tick, Ixodes holocyclus, and who were involved in regularly collecting and handling these ticks, was examined for antibodies to tick-transmitted bacterial pathogens.

Five (36%) had antibodies to Coxiella burnetii, the causative agent of Q fever and three (21%) had antibodies to spotted fever group (SFG) rickettsiae (Rickettsia spp). None had antibodies to Ehrlichia, Anaplasma, Orientia, or Borrelia (Lymedisease) suggesting that they had not been exposed to these bacteria.

A total of 149 I. holocyclus ticks were examined for the citrate synthase (gltA) gene of the SFG rickettsiae and the com1 gene of C. burnetii; 23 (15.4%) ticks were positive for Rickettsia spp. and 8 (5.6%) positive for Coxiella spp. Sequencing of fragments of the gltA gene and the 17 kDa antigen gene from a selection of the ticks showed 99% and 100% homology, respectively, to Rickettsia australis, the bacterium causing Queenslandtick typhus.

Thus, it appears that persons bitten by I. holocyclus in NE NSW, Australia have an approximate one in six risk of being infected with R. australis. Risks of Q fever were also high in this region but this may have been due to exposure by aerosol from the environment rather than by tick bite. A subset of 74 I. holocyclus ticks were further examined for DNA from Borrelia spp., Anaplasma spp. and Ehrlichia spp. but none was positive. Some of these recognised human bacterial pathogens associated with ticks may not be present in this Australian tick species from northeastern New South Wales.

_____________________

**Comments**

Folks in Australia have been fighting the denial of authorities for decades regarding Lyme Disease:  https://madisonarealymesupportgroup.com/2018/08/21/our-battle-ongoing-lyme-disease-in-australia/

https://madisonarealymesupportgroup.com/2016/11/03/ld-not-in-australia-here-we-go-again/

https://madisonarealymesupportgroup.com/2018/10/03/aussie-widow-of-lyme-disease-victim-to-sue-nsw-health/  A SYDNEY woman launches a class action against NSW Health after autopsy results showed her husband was riddled with Lyme in his liver, heart, kidney, and lungs.  He was only 44 years old and was bitten by a tick while filming a TV show in Sydney.

Now how in the world did that happen?

While they still deny Lyme (borrelia) this recent study definitively shows a number of pathogens in Australian ticks and humans including Rickettsia (more commonly known as Tick & arthropod TyphusQueensland typhus or Rickettsia australis), as well as Q Fever.

Tick Typhus is similar to Rocky Mountain spotted fever, but deemed not as severe.  Symptoms include:

  • Fever
  • Headache
  • Malaise
  • Bloodshot eyes
  • Red lump at tick bite site
  • Ulceration at tick bite site
  • Black scab at tick bite site
  • Enlarged local lymph nodes
  • Forearm red rash
  • Red body rash
  • Palm rash
  • Rash on soles of feet

Doxycycline is the front-line drug for typhus and broad-spectrum antibiotics aren’t helpful.

Fact sheet on typhus:  https://www.health.nsw.gov.au/Infectious/factsheets/Factsheets/typhus.PDF  The perps are typically lice, fleas, mites, and ticks.

https://madisonarealymesupportgroup.com/2018/08/19/monster-ticks-found-in-germany-threaten-europe-with-deadly-disease-crimean-congo-fever/  In this article, they found a tropical form of tick typhus in tropical ticks found in Germany. Typhus is making a comeback, particularly in the southern U.S. Migrating birds are transporting ticks as well as the diseases they carry worldwide 

Fact sheet on Q Fever: http://www.stopticks.org/ticks/qfever.asp

Caused by the bacteria Coxiella burnetii, it can cause pneumonia and hepatitis (liver inflammation) in its early stage, and infection of the heart valves (endocarditis) in its chronic stage.  Perps are the Brown Dog Tick (Rhipicephalus sanguine us), Rocky Mountain Wood Tick (Dermacentor andersoni), and the Lone Star Tick (Amblyomma americium).

https://coloradoticks.org/tick-borne-diseases/q-fever/  This article states it’s usually a mild disease with flu-like symptoms but sometimes it can resurface years later.  This more deadly, chronic form, of Q fever can damage heart, liver, brain and lungs. C. burnetii is highly infectious. Humans that are susceptible to this disease can be infected by a single organism. It is considered a significant threat for bio warfare and is classified as a Category B agent of bioterrorism.

The severity and combination of signs and symptoms vary greatly. About half the people infected with Q fever will get sick. Symptoms include:

  • High fever (up to 105°F)
  • Fatigue
  • Severe headache
  • General malaise
  • Myalgia
  • Chills or sweats
  • Non-productive cough
  • Nausea
  • Vomiting
  • Diarrhea
  • Abdominal pain
  • Chest pain

Doxycycline is also the front-line drug for this with quinolone antibiotics as an alternative.

Add the Ixodes holocyclus tick to this list as well.

And before you think it can only ever be in Australia, this article in the 2013 issue of the Australian Veterinary Journal shows the likelihood of a population of Ixodes holocyclus breeding outside their common range.  https://conference.ava.com.au/13097.

Well there goes the neighborhood.

Here’s a nifty chart:  https://www.lymedisease.org/lyme-basics/co-infections/other-co-infections/ (Please remember this is constantly changing)

Screen-Shot-2014-08-26-at-5.27.54-PM

If there’s one think I know for sure, it’s that nothing about ticks and the diseases they carry is sure.

They are finding tropical ticks in Germany (where they shouldn’t be) https://madisonarealymesupportgroup.com/2018/08/19/monster-ticks-found-in-germany-threaten-europe-with-deadly-disease-crimean-congo-fever/ and they are finding Asian ticks in the U.S. (where they shouldn’t be) https://madisonarealymesupportgroup.com/2018/10/03/1st-person-bitten-by-east-asian-longhorned-tick/.

When is the CDC going to get the memo and scrap the tick maps?