Archive for the ‘Ehrlichiosis’ Category

Going Outside? Watch Out For Asian Longhorned Tick Now in Kentucky

https://www.wymt.com/content/news/Going-outside-Watch-out-for–510400381.html  News Story in Link

Going outside? Watch out for unusual tick found in Eastern Kentucky

By WYMT News Staff

MARTIN COUNTY, KY. (WAVE) – It’s Memorial Day weekend and more people will head outside as the summer season kicks off. While you’re out having fun, be sure to keep an eye out for a tick that is new to the area.

This year’s tick season is different in Kentucky because a new tick has popped up in our area.

The University of Kentucky College of Agriculture, Food and Environment has received more calls about seeing ticks, but reports that incidents of tick-borne diseases in the state are very low.

People still need to use precautions because ticks are out there. They’re looking to suck blood three times in their lives in order to reproduce. This year’s tick season is different in Kentucky because a new tick has popped up in our area.

“The most common ticks we have are the Lone Star Ticks and the American Dog Tick,” Spencer County Agriculture agent Bryce Roberts said. “The new one we found is the Asian Longhorned Tick.”

Roberts said the Asian Longhorned Tick was found in Eastern Kentucky, in Martin County.

It’s very concerning because of the diseases they do carry,” Roberts said.

New ticks bring new diseases. Before or when someone gets a tick disease, they see epidemiologist Dr. Paul Schulz.

“The two we encounter the most are Ehrlichia and Rocky Mountain Spotted Fever,” Schulz said.

Schulz said the infectious disease department at Norton Healthcare found its first tick-borne disease of the year in March, a sign that tick season could be starting early.

“(In) well over 50 percent of diagnosed infections, the patient didn’t know they had tick exposure,” Schulz said.

People often don’t see or feel when a tick is biting them. However, there are ways to protect yourself and your summer experience: Cover up as much of your skin as you can, use a spray with DEET, avoid overgrown wooded areas, check yourself and your children every night.

____________________

For more:  https://madisonarealymesupportgroup.com/2018/09/12/three-surprising-things-i-learned-about-asian-longhorned-ticks-the-tick-guy-tom-mather/

https://madisonarealymesupportgroup.com/2018/08/08/an-invasive-new-tick-is-spreading-in-the-u-s/

https://madisonarealymesupportgroup.com/2018/07/19/rutgers-racing-to-contain-asian-longhorned-tick/

https://madisonarealymesupportgroup.com/2019/01/14/multistate-infestation-with-the-exotic-disease-vector-tick-haemaphysalis-longhornis-u-s-aug-2017-sept-2018/Where this tick exists, it is an important vector of human and animal disease agents. In China and Japan, it transmits the severe fever with thrombocytopenia syndrome virus (SFTSV), which causes a human hemorrhagic fever (2), and Rickettsia japonica, which causes Japanese spotted fever (3). Studies in Asia identified ticks infected with various species of Anaplasma, Babesia, Borrelia, Ehrlichia, and Rickettsia, and all of these pathogen groups circulate zoonotically in the United States (4,5). In addition, parthenogenetic reproduction, a biologic characteristic of this species, allows a single introduced female tick to generate progeny without mating, thus resulting in massive host infestations.

 

Authorities have been relatively mum on what this tick transmits and I’ve had to dig to find it.  So far there are no noted human illnesses caused by this tick in the U.S., but the ones listed above have occurred other countries.  Do they really think this tick isn’t going to acquire disease and transmit here?  Maybe in an alternative reality, but then again, the CDC lives in an alternative reality.

 

 

 

 

 

Ehrlichia Strain Isolated From a Minnesota Tick – Frequently Lethal in Mice & Hamsters

https://www.ncbi.nlm.nih.gov/pubmed/31076433/

2019 May 10. pii: AEM.00866-19. doi: 10.1128/AEM.00866-19. [Epub ahead of print]

Characterization and genetic transformation of an Ehrlichia isolated from a Minnesota tick.

Abstract

Ehrlichia muris subsp. eauclairensis is recognized as the etiological agent of human ehrlichiosis in Minnesota and Wisconsin. We describe the culture isolation of this organism from a field-collected tick and detail its relationship to other species of Ehrlichia. The isolate could be grown in a variety of cultured cell lines and was effectively transmitted between Ixodes scapularis ticks and rodents, with PCR and microscopy demonstrating a broad pattern of dissemination in arthropod and mammalian tissues. Conversely, Amblyomma americanum ticks were not susceptible to infection by the Ehrlichia. Histologic sections further revealed that the wild-type isolate was highly virulent for mice and hamsters, causing severe systemic disease that was frequently lethal. A Himar1 transposase system was used to create mCherry and mKate-expressing EmCRT mutants, which retained the ability to infect rodents and ticks.

Importance: Ehrlichioses are zoonotic diseases caused by intracellular bacteria that are transmitted by ixodid ticks. Here we report the culture isolation of bacteria which are closely related to, or the same as the Ehrlichia muris subsp. eauclairensis, a recently recognized human pathogen. EmCRT, obtained from a tick removed from deer at Camp Ripley, Minnesota, is the second isolate of this subspecies described, and is distinctive in that it was cultured directly from a field-collected tick. The isolate’s cellular tropism, pathogenic changes caused in rodent tissues, and tick transmission to and from rodents are detailed in this study. We also describe the genetic mutants created from the EmCRT isolate, which are valuable tools for the further study of this intracellular pathogen.

_________________

**Comment**

OTHER MODES OF TRANSMISSION

Ehrlichia chaffeensis has been shown to survive for over a week in refrigerated blood. Therefore these bacteria may present a risk for transmission through blood transfusion and organ donation. It has also been suggested that ehrlichiosis can be transmitted from mother to child, and through direct contact with slaughtered deer. (14, 15)

https://madisonarealymesupportgroup.com/2018/12/02/everything-thats-known-about-ehrlichiosis/ (Treatments listed)

https://madisonarealymesupportgroup.com/2018/10/02/north-carolina-ehrlichia-often-overlooked-when-tick-borne-illness-suspected/

https://madisonarealymesupportgroup.com/2018/07/24/oklahoma-ehrlichiosis-central/

https://madisonarealymesupportgroup.com/2018/03/09/dogs-ehrlichiosis/

 

 

Rickettsiales in Ticks Removed From Outdoor Workers From Georgia & Florida

https://wwwnc.cdc.gov/eid/article/25/5/18-0438_article

Volume 25, Number 5—May 2019

Research Letter

Rickettsiales in Ticks Removed from Outdoor Workers, Southwest Georgia and Northwest Florida, USA

Elizabeth R. Gleim1Comments to Author , L. Mike Conner, Galina E. Zemtsova, Michael L. Levin, Pamela Wong, Madeleine A. Pfaff, and Michael J. Yabsley  DOI: 10.3201/eid2505.180438

The southeastern United States has multiple tick species that can transmit pathogens to humans. The most common tick species, Amblyomma americanum, is the vector for the causative agents of human ehrlichioses and southern tick-associated rash illness, among others (1). Dermacentor variabilis ticks can transmit the causative agent of Rocky Mountain spotted fever, and Ixodes scapularis ticks can transmit the causative agents of Lyme disease, babesiosis, and human granulocytic anaplasmosis (1). Although less common in the region, A. maculatum ticks are dominant in specific habitats and can transmit the causative agent of Rickettsia parkeri rickettsiosis (1).

Persons who have occupations that require them to be outside on a regular basis might have a greater risk for acquiring a tickborne disease (2). Although numerous studies have been conducted regarding risks for tickborne diseases among forestry workers in Europe, few studies have been performed in the United States (2,3). The studies that have been conducted in the United States have focused on forestry workers in the northeastern region (2). However, because of variable phenology and densities of ticks, it is useful to evaluate tick activity and pathogen prevalence in various regions and ecosystems.

Burn-tolerant and burn-dependent ecosystems, such as pine (Pinus spp.) and mixed pine forests commonly found in the southeastern United States, have unique tick dynamics compared with those of other habitats (4). The objective of this study was to determine the tick bite risk and tickborne pathogen prevalence in ticks removed from forestry workers working in pine and mixed pine forests in southwest Georgia and northwest Florida, USA.

During June 2009–December 2011, forestry workers in southwestern Georgia (7 counties) and northwestern Florida (1 county) submitted ticks crawling on or attached to them. We identified ticks and tested them for selected pathogens (Appendix). Immature forms of the same species from the same day and person were pooled (<5 nymphs and <20 larvae) for testing.

A total of 53 persons submitted 362 ticks (Table). Excluding larvae, the most common tick species submitted was A. maculatum, followed by A. americanum, I. scapularis, and D. variabilis. On 4 occasions, 1 person submitted A. tuberculatum ticks (3 batches of larvae and 1 batch of nymphs) from a longleaf pine site in Baker County, Georgia. Average submissions per persons were 2.6 ticks (median 1 tick), but 1 person submitted 100 ticks. A total of 24 persons submitted ticks more than once, and they submitted an average of 0.08–6.5 ticks/month (overall average submission rate of 1.1 ticks/month). Three ticks were engorged (1 D. variabilis adult, 1 A. americanum nymph, and 1 Amblyomma sp. nymph); only the Amblyomma sp. nymph was positive for a pathogen (R. amblyommatis).

  • Rickettsia spp. prevalence was 36.4% in adult, 27.9% in nymphal, and 20% in larval A. americanum ticks; R. amblyommatis was the only species identified (Table).
  • Rickettsia spp. were detected in 23% of A. maculatum adults; R. amblyommatis was most common (6.0%), followed by R. parkeri (4.8%).
  • A previously detected novel Rickettsia sp. was identified in 10 of 11 A. tuberculatum larval pools and was reported by Zemtsova et al. (6). An additional pool of A. tuberculatum nymphs was tested in this study and also was positive for the novel Rickettsia sp.
  • E. chaffeensis was detected in 1 A. maculatum adult (prevalence 1.2%), and Panola mountain Ehrlichia sp. was detected in 2 A. maculatum adults (prevalence 2.4%) and 1 D. variabilis adult (prevalence 10%).
  • No ticks were positive for Borrelia spp., E. ewingii, or Anaplasma phagocytophilum.

Thus, forestry workers were found to encounter ticks on a regular basis, and peak encounter rates reflected previously reported tick seasonality in this region (4). Only 3 (0.8%) of the ticks submitted were engorged, indicating prompt removal of most ticks and thus low risk for pathogen transmission. A. maculatum, a fairly uncommon tick in the southeastern United States, was the most commonly submitted tick. However, A. maculatum ticks dominate in regularly burned pine ecosystems (4), which is where most of these workers spent their time.

We observed several unique findings related to pathogens during this study. Larvae and nymphs of A. tuberculatum ticks were submitted on multiple occasions, a tick rarely reported on humans (7). These findings in conjunction with the identification of a novel Rickettsia sp. (6), suggest that additional research is warranted. This study also identified E. chaffeensis and Panola Mountain Ehrlichia in A. maculatum ticks. Although A. americanum ticks are considered the primary vector of Ehrlichia spp., these pathogens have been occasionally reported in questing A. maculatum ticks, suggesting that this tick might be involved in their transmission cycles (5,8). We also detected Panola Mountain Ehrlichia in 1 D. variabilis tick. Thus, further research regarding these alternative tick species as potential vectors of these pathogens is warranted, particularly in the case of A. maculatum ticks, which were a common species on forestry workers and are widespread in this region (4).

At the time of this study, Dr. Gleim was a research scientist at the University of Georgia, Athens, GA. She is currently a disease ecologist at Hollins University, Roanoke, VA. Her research interests include wildlife and zoonotic diseases with a particular emphasis on tickborne diseases.

Acknowledgments

We thank the persons whom submitted ticks for this study and members of the Yabsley and Levin laboratories for providing laboratory assistance.

This study was supported by the Centers for Disease Control and Prevention/University of Georgia (UGA) collaborative grant (#8212, Ecosystem Health and Human Health: Understanding the Ecological Effects of Prescribed Fire Regimes on the Distribution and Population Dynamics of Tick-Borne Zoonoses); the Oxford Research Scholars Program at Oxford College of Emory University; the Joseph W. Jones Ecological Research Center, the Warnell School of Forestry and Natural Resources (UGA); the Southeastern Cooperative Wildlife Disease Study (UGA) through the Federal Aid to Wildlife Restoration Act (50 Statute 917); and Southeastern Cooperative Wildlife Disease Study sponsorship from fish and wildlife agencies of member states.

References

  1. Stromdahl  EY, Hickling  GJ. Beyond Lyme: aetiology of tick-borne human diseases with emphasis on the south-eastern United States. Zoonoses Public Health. 2012;59(Suppl 2):4864. DOIPubMed
  2. Covert  DJ, Langley  RL. Infectious disease occurrence in forestry workers: a systematic review. J Agromed. 2002;8:95111. DOIPubMed
  3. Lee  S, Kakumanu  ML, Ponnusamy  L, Vaughn  M, Funkhouser  S, Thornton  H, et al. Prevalence of Rickettsiales in ticks removed from the skin of outdoor workers in North Carolina. Parasit Vectors. 2014;7:607. DOIPubMed
  4. Gleim  ER, Conner  LM, Berghaus  RD, Levin  ML, Zemtsova  GE, Yabsley  MJ. The phenology of ticks and the effects of long-term prescribed burning on tick population dynamics in southwestern Georgia and northwestern Florida. PLoS One. 2014;9:e112174. DOIPubMed
  5. Loftis  AD, Kelly  PJ, Paddock  CD, Blount  K, Johnson  JW, Gleim  ER, et al. Panola Mountain Ehrlichia in Amblyomma maculatum From the United States and Amblyomma variegatum (Acari: Ixodidae) From the Caribbean and Africa. J Med Entomol. 2016;53:6968. DOIPubMed
  6. Zemtsova  GE, Gleim  E, Yabsley  MJ, Conner  LM, Mann  T, Brown  MD, et al. Detection of a novel spotted fever group Rickettsia in the gophertortoise tick. J Med Entomol. 2012;49:7836. DOIPubMed
  7. Goddard  J. A ten-year study of tick biting in Mississippi: implications for human disease transmission. J Agromed. 2002;8:2532. DOIPubMed
  8. Allerdice  ME, Hecht  JA, Karpathy  SE, Paddock  CD. Evaluation of Gulf Coast ticks (Acari: Ixodidae) for Ehrlichia and Anaplasma species. J Med Entomol. 2017;54:4814.https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28031351&dopt=Abstract

Table

_____________________

**Comment**

Again, folks down South should be taken seriously when they present with symptoms.  BTW: Southern advocates tell me that STARI looks, smells, and feels just like Lyme disease.  

Lyme IS in the South:  https://madisonarealymesupportgroup.com/2016/10/25/hope-for-southerners/

The take home: Clark is finding borrelia (Lyme) strains in the South that the current CDC two-tier testing will never pick up in a thousand years.

https://www.researchgate.net/publication/285584725_Isolation_of_live_Borrelia_burgdorferi_sensu_lato_spirochetes_from_patients_with_undefined_disorders_and_symptoms_not_typical_for_Lyme_diseases

The take home: Clark found live Bbsl (bissettii-like strain) in people from the Southeast who had undefined disorders not typical of LD, and were treated for LD even though they were seronegative, proving that B. bissetti is responsible for worldwide human infection.

He also showed DNA of Bbsl in Lone Star ticks which might be a bridge vector of transmission to humans.

Dr. Clark was the first to report finding LD spirochetes in animals and ticks in South Carolina, as well as in wild lizards in South Carolina and Florida. He has documented the presence of LD Borrelia species, Babesia microti, Anaplasma phagocytophilum, Rickettsia species, and other tick-borne pathogens in wild animals, ticks, dogs, and humans in Florida and other southern states.

Clark is infected.  Surprised?  This is why he’s finding answers – it’s much more than a job to him.

https://madisonarealymesupportgroup.com/2018/05/31/no-lyme-in-the-south-guess-again/

https://madisonarealymesupportgroup.com/2019/03/19/jacksonville-family-shares-daughters-9-month-diagnosis-of-rare-disease-which-isnt-rare-lyme/

Time to start believing people!

Ehrlichiosis: A Tick-borne Illness That Can Imitate Blood-Related Cancers

https://www.galaxydx.com/ehrlichiosis-tick-borne-infection-imitates-blood-related-cancers/

Ehrlichiosis: A Tick-borne Illness That Can Imitate Blood-Related Cancers

 

Tick Data – 76% Infected With One Organism, 20% Have Three or More Pathogens

https://www.tickcheck.com/statistics?

Each tick submitted for testing contributes to the research being conducted at TickCheck. By keeping records of all the results generated, we have been able to gain valuable insights into disease prevalence and co-infection rates. The comprehensive testing panel has been especially helpful in contributing to this research by ensuring all diseases and coinfections are accounted for when examining a tick.

Our current research shows:
  • 76% of ticks tested have at least one disease causing organism
  • 49% are co-infected with two or more organisms
  • 20% carry three or more
  • 9% of the ticks tested carry four or more

Infection Visualization by Tick Species

All Ticks Tested
76% Positive for Infection
Negative (24%)
_____________________________
  • 93% Positive for Infection
  • Negative (7%)
  • 63% Positive for Infection
  • Negative (37%)
  • 48% Positive for Infection
  • Negative (52%)

Coinfection Visualization

  • 2+ coinfection 49%
  • No coinfection 51%

Pathogenic Prevalence

The information below shows the positive/negative prevalence ratio of selected pathogens we test for. These pathogens were observed in ticks from the United States and Canada. Data set includes tests performed since TickCheck’s founding in 2014 and is updated in real time. (

Go to link at beginning to filter by state.  I’ve added the 3 listed for Wisconsin next to the entire sample size.  Please note the small sample sizes of WI ticks. 

Borrelia burgdorferi (deer tick) associated with Lyme disease

Sample size of 3,280 ticks.           70 Wisconsin ticks
  • 30% postive                                           33% positive
  • 70% negative                                         67% negative

Borrelia burgdorferi (western blacklegged tick) associated with Lyme disease

Sample size of 279 ticks.
  • 4% positive
  • 96% negative

Borrelia burgdorferi (lone star tick) associated with Lyme disease

Sample size of 899 ticks.
  • 8% positive
  • 92% negative

Borrelia burgdorferi (American dog tick) associated with Lyme disease

Sample size of 901 ticks.
  • 2% positive
  • 98% negative

Anaplasma phagocytophilum associated with anaplasmosis

Sample size of 2,146 ticks.           36 Wisconsin ticks
  • 8% positive                                           11% positive in Wisconsin
  • 92% negative                                        89% negative in Wisconsin

Babesia microti associated with babesiosis

Sample size of 1,894 ticks.           32 Wisconsin ticks
  • 4% positive                                            6% positive
  • 96% negative                                        94% negative

Bartonella spp. associated with bartonellosis

Sample size of 1,060 ticks.
  • 47% positive
  • 53% negative

Ehrlichia chaffeensis associated with ehrlichiosis

Sample size of 857 ticks.
  • 2% positive
  • 98% negative

Rickettsia spp. associated with Rocky Mountain spotted fever

Sample size of 944 ticks.
  • 23% postive
  • 77% negative

Francisella tularensis associated with tularemia

Sample size of 1,028 ticks.
  • 1% positive
  • 99% negative

Borrelia miyamotoi associated with B. miyamotoi

Sample size of 1,091 ticks.
  • 6% postive
  • 94% negative

Borrelia lonestari associated with STARI

Sample size of 831 ticks.
  • 19% postitive
  • 81% negative

Babesia spp. associated with babesiosis

Sample size of 564 ticks.
  • 5% positive
  • 95% negative

Mycoplasma spp. associated with Mycoplasma spp.

Sample size of 948 ticks.
  • 8% positive
  • 92% negative

Borrelia spp. associated with Borrelia spp.

Sample size of 612 ticks.
  • 17% postive
  • 83% negative

Powassan virus Lineage II associated with Deer tick virus

Sample size of 102 ticks.
  • 24% positive
  • 76% negative

Borrelia mayonii associated with Lyme disease

Sample size of 376 ticks.
  • 100% negative

Ehrlichia ewingii associated with ehrlichiosis

Sample size of 283 ticks.
  • 100% negative

Rickettsia amblyommii associated with Rocky Mountain spotted fever

Sample size of 177 ticks.
  • 46% positive
  • 54% negative

__________________

For more about Tickcheckhttps://www.tickcheck.com/about

You can request free tick identification by sending in a quality picture of your tick. Using real-time PCR (Polymerase Chain Reaction), Tickcheck can determine the presence of certain pathogens with an accuracy level of over 99.9%.  All information about how to send in your tick, costs of various tests, time for results, etc. is found here:  https://www.tickcheck.com/info/faq

Jonathan Weber is the founder and CEO of TickCheck and became acutely aware of the dangers of tick-borne diseases after his father caught Lyme during a family trip on the Appalachian Trail.

___________________

**Comment**

This information supports current research showing many patients are infected with numerous pathogens causing more severe illness & requiring far more than the CDC’s mono therapy of doxycycline:  https://madisonarealymesupportgroup.com/2018/10/30/study-shows-lyme-msids-patients-infected-with-many-pathogens-and-explains-why-we-are-so-sick/

It also supports previous work showing coinfections within ticks:  https://madisonarealymesupportgroup.com/2017/05/01/co-infection-of-ticks-the-rule-rather-than-the-exception/

What I want to know is WHY nothing’s being done about this?  Why are people STILL given 21 days of doxycycline when that particular med will not work on numerous pathogens?
Lastly, a word about statistics – this tick data should be used with caution & never to turn sick patients away due to a statistic. If you are the sorry sucker who gets bit by that ONE tick carrying a “statistically insignificant” pathogen, you still got bit and have to deal with it.  
Shame on doctors for turning sick people away due to statistics and maps.
There’s no such thing as an “insignificant” tick bite!

But, Patients are STILL being turned away:  https://madisonarealymesupportgroup.com/2019/04/22/its-just-crazy-why-is-lyme-disease-treatment-so-difficult-to-find-in-mississippi/

https://madisonarealymesupportgroup.com/2019/03/19/jacksonville-family-shares-daughters-9-month-diagnosis-of-rare-disease-which-isnt-rare-lyme/

https://madisonarealymesupportgroup.com/2018/05/31/no-lyme-in-the-south-guess-again/

https://madisonarealymesupportgroup.com/2017/10/24/no-lyme-in-oklahoma-yeah-right/

https://madisonarealymesupportgroup.com/2016/09/24/arkansas-kids-denied-lyme-treatment/  “They had the classic symptoms, they had the bulls eye rash, they had the joint pain, they had fevers and had flu like symptoms, yet we were denied treatment for at least two of them and I don’t understand how this is legal,” said Bowerman.

According to Dr. Naveen Patil, Director of the Infectious Disease Program, ADH,

“We don’t have Lyme Disease in Arkansas, we have the ticks that transmit Lyme Disease but we don’t have any recorded cases of Lyme Disease.” 

Bowerman also received a letter from the clinic stating doctors would no longer treat her children because she consistently questioned their medical advice and recommendations.

This is getting to be way beyond ludicrous.

 

Eye Problems in Tick-borne Diseases Other Than Lyme

http://danielcameronmd.com/eye-problems-tick-borne-diseases-lyme/

EYE PROBLEMS IN TICK-BORNE DISEASES OTHER THAN LYME

“Why should an ophthalmologist have a good understanding of Lyme diagnosis and treatment?” asks Sathiamoorthi [1], from the Mayo Clinic, in an article published in the Current Opinion in Ophthalmology. “Vision-threatening ophthalmic manifestations are relatively common in Lyme disease (LD) and Rocky Mountain spotted fever.”

by Daniel J. Cameron, MD MPH

“Knowledge of systemic and ophthalmic manifestations combined with an understanding of the epidemiology of disease vectors is crucial for the diagnosis of tick-borne diseases,” she explains.

While manifestations may be present with LD and Rocky Mountain spotted fever, ocular involvement is rare in other tick-borne diseases such as babesiosis, tick-borne relapsing fever, Powassan encephalitis, ehrlichiosis, anaplasmosis, and Colorado tick fever, Sathiamoorthi points out.

However, the true prevalence of ocular involvement due to tick-borne illnesses is unknown. Limitations with testing can make it difficult to identify patients. “It is crucial to know who is appropriate to test in order to avoid false positive results.” If an individual has been symptomatic for only a short period of time, they “may not have detectable serum IgM antibodies to the causative organism because it takes time for this immune response to develop.”

It can also be difficult to determine the cause of the ocular complaints if there is evidence of more than one tick-borne illness.

“One case report [2] describes a patient with optic neuritis and orbital myositis who had serologic evidence of HME [Human Monocytic Ehrlichioisis], Borrelia burgdorferi, and Babesia,” cites Sathiamoorthi.

There are more than one species of ticks associated with ocular findings, as well. According to Sathiamoorthi, those include Ornithodoros genus, Dermacentor variabilis Ambylomma americanum, Ixodes scapularis, and Dermacentor andersonii.

Sathiamoorthi advises doctors to “carefully generate a reasonable differential based on clues in the medical and social history regarding exposures and risks.”

“Patients who are most likely to have ophthalmic Lyme disease,” explains Sathiamoorthi, “are those with ocular manifestations commonly associated with Lyme disease (i.e. Bells palsy, cranial nerve palsies and keratitis); tick exposure in Lyme endemic regions; other signs/symptoms of late Lyme disease (i.e. inflammatory arthritis, carditis, acrodermatitis chronica atrophicans rash, encephalopathy and meningitis); and negative syphilis testing.”

Read more on eye problems in tick-borne diseases in “A growing list of eye problems in Lyme disease.”

References:

1. Sathiamoorthi S, Smith WM. The eye and tick-borne disease in the United States. Curr Opin Ophthalmol. 2016;27(6):530-537.
2. Pendse S, Bilyk JR, Lee MS. The ticking time bomb. Surv Ophthalmol. 2006;51(3):274-279.

 

Human Ehrlichiosis: Clinical Associations & Outcomes of Transplant Patients & Patients With Hemophagocytic Lymphohistiocytosis

https://www.ncbi.nlm.nih.gov/pubmed/30913447

Human ehrlichiosis at a tertiary-care academic medical center: Clinical associations and outcomes of transplant patients and patients with hemophagocytic lymphohistiocytosis.

Abstract

BACKGROUND:

Ehrlichiosis is an acute febrile tick-borne disease which can rarely be a trigger for secondary hemophagocytic lymphohistiocytosis (HLH).

METHODS:

We reviewed our experience with Ehrlichia infections at a tertiary-care academic medical center.

RESULTS:

Over 10  years, 157 cases of ehrlichiosis were identified. Ten patients (6.4%) had infection with E. ewingii, 7(4.5%) of whom were transplant patients as compared to 3(1.9%) non-transplant patients (p = .035). Transplant patients were more likely to have leukopenia and elevated creatinine compared to immunocompetent patients; length of hospital stay and early mortality were not different between the two groups. Ten patients met the HLH-2004 diagnosis criteria, which could be an underestimation of HLH occurrence as most patients were not completely evaluated for these criteria. We calculated the H-Score to find the probability of HLH; 25 patients scored high making the occurrence rate of HLH at least 16%. Ehrlichia-induced HLH patients (N = 25) had more anemia, thrombocytopenia, elevated creatinine and AST. Moreover, they had a significantly longer hospital stay (median 9 days) compared to patients without HLH (median 4 days) (p = .006).

CONCLUSIONS:

Ehrlichia-induced HLH is a potential serious complication with relatively high occurrence rate; patients manifest severe disease with end-organ damage requiring longer hospital stay.

________________

For more:  https://madisonarealymesupportgroup.com/?s=ehrlichiosis+