Archive for the ‘Inflammation’ Category

Lyme & Memory Loss

What causes memory loss specifically? And what does it feel like to experience it?

My long-term memory has always been sharp as a tack. I can repeat verbatim a conversation that happened two decades ago; I can tell you what a friend was wearing on the first day of third grade; I know what I ate at the restaurant my family went to on the last night of a vacation we took when I was in high school. People say, “It’s incredible that you can remember so much,” to which I often respond, “Just don’t ask me what I had for breakfast.”

The joke gets a good laugh, but it’s actually a serious matter: despite my unusually strong long-term memory, my short-term memory has been affected by the tick-borne illnesses Lyme disease, babesiosis, and ehrlichiosis. Some evenings I truly couldn’t tell you what I had for breakfast, and other times I need to look at my calendar to remember what I did that day. Once jogged, the memory comes back to me like a slow Google search, but the hang time between someone asking me about my day and my response can be embarrassingly long.

What causes memory loss specifically? And what does it feel like to experience it?

Though our central nervous systems are generally protected by the blood brain barrier, Lyme bacteria (spirochetes) are sneaky and smart, and can spiral their way across the border. Once that security breach occurs, a patient may experience “Lyme brain”, which can manifest as brain fog, word or song iteration, depression and anxiety, tremors, mini-seizures, headaches, burning extremities and memory loss.

As described in the book Conquering Lyme Disease: Science Bridges the Great Divide by Brian A. Fallon, MD and Jennifer Sotsky, MD, “Lyme disease can directly affect brain and sensorium in multiple ways: via direct infection, immune system effects, changes in neurotransmitter balance, and altered neural pathways.” Inflammation in the brain, as well as impaired oxygen flow to the brain as is often seen with babesiosis, can impact cognitive function. Drs. Fallon and Sotsky write that short-term memory problems are one of the most common cognitive effects of neurological Lyme disease. The book includes images of low blood flow in the brain of patients with memory impairment after Lyme disease (referred to as post-treatment Lyme encephalopathy).

In her book Lyme Brain, Nicola McFadzean Ducharme, ND, references studies in which Borrelia burgdorferi spirochetes were found in the brains of Alzheimer’s patients. While many Alzheimer’s patients don’t have Lyme, and many Lyme patients won’t develop Alzheimer’s, the studies show both how easily Lyme bacteria can cross the blood brain barrier, and how easily their presence can be misdiagnosed as dementia or Alzheimer’s when a chief symptom is memory loss.

The extent to which a patient’s memory is affected depends largely on their response to treatment.

When I started antibiotic therapy, some of my neurological systems worsened at first, as I experienced Herxheimer reactions, and the antibiotics chased those clever spirochetes deeper into my brain. After a couple months, my brain fog decreased, I had better concentration, and my memory improved. Sticking to an anti-inflammatory diet and taking supplements to help rid my brain of neurotoxins also helped. I learned to pace myself and to stay away from overstimulating activities (like big movie theaters or fireworks shows) that rile up my neurological symptoms, including memory loss.

Luckily, my long-term memory was never affected, which is a blessing as a writer. But while my short-term memory problems have improved, they are not fully gone. I especially notice them now when I am over tired or over worked. During those periods, I might leave someone a voicemail in the morning and then leave a similar message later in the day, forgetting about the first. I find myself asking friends, “Did I already tell you this story?” I’m hyper-aware of the deficit, but friends and family assure me that my lapses are relatively infrequent. Rest, quiet time away from screens, and relaxation usually have me back in “working order” in just a couple days.

If you are in an acute stage of neurological tick-borne illness, it’s possible that you’ve read this post and forgotten what it said; that you lost track of where you were whiling reading; or that you’ll tell someone about what you read more than once. Know that you’re not alone, and that with proper treatment through a Lyme Literate Medical Doctor (LLMD) and good self-care, a time will come when everything will seem much clearer.

[1] Fallon, Brian A., MD and Sotsky, Jennifer, MD. Conquering Lyme Disease: Science Bridges the Great Divide. New York: Columbia University Press (2018), 314.

[1] McFadzean Ducharme, Nicola, ND. Lyme Brain. California: BioMed Publishing Group, LLC (2016), 15-16.

For more blog posts, click here.

jennifer crystal_2

Opinions expressed by contributors are their own.

Jennifer Crystal is a writer and educator in Boston. Her memoir about her medical journey is forthcoming. Contact her at

Lyme Symptoms: Nervous System Inflammation

We patients must remember that Lyme is an inflammatory disease. Flare-ups often involve increased inflammation.

by Jennifer Crystal

Last week I had an incredibly busy schedule. I did research, had several long conversations over Zoom, taught a class, and wrote a lot. The work required a good amount of mental energy, or “spoons”. I also happened to have a physically busy week, running around doing errands and going to doctor’s appointments, as well as meeting friends for socially distanced walks.

But what Lyme patients need to do and what we want to do don’t always match up.

By Thursday evening, my brain felt as if it was filling with cotton, a pressure I remember well from my acute days with Lyme disease, ehrlichiosis, and babesiosis. This should have been my cue to stop and rest. What I really needed to do was darken the lights, put on some soft music, and relax. But what Lyme patients need to do and what we want to do don’t always match up. In this case, I wanted to relax by watching a favorite show, something I’d been looking forward to as a reward all week. And so I watched. Big mistake. Halfway through the program, my feet got very hot. They weren’t under a blanket. It was cool in the room. But my feet felt like they were on fire.

Burning extremities are a common manifestation of neurological Lyme disease. While my own infections are in remission, pushing myself physically and mentally can cause flare-ups. The sensory overload of the TV show was the proverbial straw that broke the camel’s back. My nervous system was inflamed, and needed a cool down, stat. What exactly causes nervous system inflammation in tick-borne illness?

As Richard I. Horowitz, MD explains in How Can I Get Better? An Action Plan for Treating Resistant Lyme & Chronic Disease, “Inflammation underlies the symptoms in many neurological diseases. In a study published in 2007 in Lancet Neurology, researchers reported that the neurological syndromes associated with Borrelia burgdorgferi are also associated with inflammation in the central nervous system, in particular amyloid metabolism. Amyloids are proteins that aggregate and change the structure of cells, damaging them.” He goes on to say, “Amyloid is just one of several neurotoxins: substances that can damage or kill off the brain’s neurons that are produced by inflammation and can alter the normal activity of the cells of the central nervous system…Neurotoxins and inflammation both can alter the normal activity of the nervous system.” [i]

For patients, this altered activity can manifest as the peripheral neuropathy (burning extremities, numbness, tingling) and “ brain fog” I experienced, as well as headaches, memory loss, confusion, anxiety, depression, sleep disturbances, and more. We patients must remember that Lyme is an inflammatory disease. Flare-ups often involve increased inflammation. That’s easy to remember when you’re in an acute stage and your entire body hurts or you’re getting systemic hives. For those of us who are doing well, we can easily forget how quickly inflammation can rev back up.

Last week was a sobering reminder for me. After watching my TV show, I had crazy dreams. When I woke up, I texted a friend, “I feel like I’ve been electrocuted.” To quiet my nervous system, I relied on tricks that have helped in the past: I went for an integrative manual therapy appointment, where my practitioner did some cranial sacral massage. I increased my consumption of anti-inflammatory foods. I stayed away from screens and even reading. That weekend, I wanted to go for a walk, but my body was too tired, so instead of pushing it as I had all week, I just stayed home. By Monday, I felt much better.

For those in acute stages of infection, increased inflammation may be a sign of needing additional, or different, antibiotics. Your Lyme Literate Medical Doctor (LLMD) may want to add an anti-inflammatory medication to your regimen. They may recommend certain supplements that can reduce inflammatory cytokines. Only you and your doctor can decide what treatment will work best for your specific case of inflammation, but everyone can benefit from rest, hydration, good sleep hygiene, and an anti-inflammatory diet. I’m glad to report that this past week was much better. My body and brain speak up when I’ve pushed them too far. Though I don’t always heed the messages quickly enough, I do heed them at all, and that’s made recovery from nervous system inflammation faster and better.

[i] Horowitz, Richard I., MD. How Can I Get Better? An Action Plan for Treating Resistant Lyme & Chronic Disease. New York: St. Martin’s Press, 2017 (183-4).

For more blogs, click here

Opinions expressed by contributors are their own. Jennifer Crystal is a writer and educator in Boston. Her memoir about her medical journey is forthcoming. Contact her using her email.




Ms. Crystal wrote about getting the first COVID injection in March, and that she struggled with, slight nausea and achiness. This feeling continued through the next morning. By about 10:00 a.m. on Tuesday, I felt like I had a mild flu: chills, achiness, headache, and fatigue. I did not run a fever.”

She also stated the symptoms prevented her from working the rest of the day.

If she received the 1st injection in March, that means the second shot,  according to the CDC, would have been given 21, or 28 days or later – but not before.  They also state:

Side effects after your second shot may be more intense than the ones you experienced after your first shot. 

I wonder if she’s considering the fact this injection may be partially or fully to blame for her issues in April.

We’ve been falsely told these injections are “safe and effective,” despite the warnings of numerous doctors and researchers to the contrary.  In previous animal studies utilizing this technology, EVERY SINGLE ANIMAL DIED. We also know people are still contracting COVID-19 after receiving all the injections, clearly demonstrating they don’t stop you from getting it. They also don’t stop you from transmitting it to othersso getting the injections because you visit grandma doesn’t hold any water. A researcher has warned about the unsafe epitopes.

Food for thought.

And please remember the plethora of effective treatments being censored or banned:

In-Depth Look at the Dangers of Mold Toxicity

In-Depth Look at the Dangers of Mold Toxicity


By Holtorf Medical Group

Mold is a type of fungus that grows in the form of multicellular filaments called hyphae. There are tens of thousands of mold species that have evolved to survive harsh conditions. Mold reproduces by means of small, lightweight spores that travel through the air. These spores contain toxic chemicals called mycotoxins that can be inhaled and lead to mold toxicity.

Mold toxicity is a very prevalent and underdiagnosed condition that can consist of a variety of symptoms. Although anyone can suffer from mold toxicity, 25% of the population is particularly vulnerable due to a genetic predisposition that inhibits the clearance of biotoxins.

Learn about sources of mold, how mold affects the body, and more below.


Because mold grows on organic matter, it is an increasingly common part of our environment and people can be exposed in a variety of ways. Mold is able to feed on the moisture and warmth of its surroundings, leading to the release of mold spores and volatile organic compounds (VOCs). In fact, research suggests that mold can surface anywhere after just two days of moisture exposure.

Outdoor sources of mold include:

  • Stagnant water sources
  • Forests, beaches
  • Playgrounds
  • Sidewalks

Unfortunately, mold is also commonly found indoors, which is typically more harmful as mold spores can accumulate in higher concentrations due to a lack of airflow. Mold spores can enter homes, schools, and workplaces by attaching to clothing, shoes, or pets. Additionally, homes in climates where it frequently rains or that reside near the water are more likely to develop mold as they are exposed to moisture more often. It is common for mold to be found in damp bathrooms, basements, carpets, tiles, drywall, washing machines, and dishwashers. Some of the most common varieties of indoor mold are Aspergillus, Cladosporium, and Stachybotrys atra, all of which are considered black mold.

There is a growing number of health problems caused by mold inhalation. This is thought to be, in part, due to the rise of people living in urban areas. Researchers at Hospital General Universitario Gregorio Maranon in Spain reported that Aspergillus spores in outdoor air are more common in urban than rural settings in the province of Madrid. The continuing rise in global population has also pushed more people into environments that are likely to breed mold such as coastal and riparian floodplains, other bottomlands, and hurricane-prone areas.

Other mold risk factors are on the rise due to poor building practices that have been accepted for convenience. For instance, poorly built roofs leave behind rainwater that fosters mold growth. It is also common for venting clothes dryers to be located in a spot where they direct moisture to vulnerable areas inside homes. Additionally, modern homes often have tighter building envelopes, slowing the escape of water vapor and allowing it to become trapped and grow mold.

It is important to note that the same conditions that allow for mold growth also foster bacteria, MVOCs, beta-glucans, live or dead spores, fungal fragments, endotoxins, dust mites, cockroaches, and other pests. This combination of toxins can trigger an immune response and exacerbate chronic illnesses.

How Mold Affects the Body

Fungal secondary metabolites or mycotoxins affect numerous bodily functions mainly through triggering an immune response that leads to chronic inflammation. Mycotoxins impact both the innate immune system (the first line of defense against invading pathogens) and the adaptive immune response (specified immune response that eliminates certain pathogens and prevents their growth).

Mycotoxins such as aflatoxins and ochratoxins (which are produced from Aspergillus) as well as fumonisins (produced by Fusarium) have immunomodulatory properties. Consequently, these mycotoxins alter the body’s inflammatory response. Specifically, they target the functionality and production of cytokines, macrophages, and neutrophils.

Mycotoxins bind with cytokines, leading to an increase in clot formation and arterial blockages. This can lead to headaches, muscle aches, lack of temperature regulation, and brain fog. Increased cytokine levels then trigger action from white blood cells such as macrophages and neutrophils. This inflammatory immune response can restrict blood flow and reduce the amount of oxygen transported to tissues, resulting in fatigue, shortness of breath, and muscle cramps.

Another contributing aspect to the chronic inflammation experienced with mold toxicity is due to the way in which mycotoxins impair the white blood cell’s regulation cytokines, which leads to an increase in infections and a slower recovery from these infections.

Moreover, some mycotoxins inhibit the production of messenger cells, leukotriene B4, by targeting the enzyme, LTA4 hydrolase. This interrupts communication between the immune cells and minimizes the body’s defense mechanism. Because the first line of defense is impaired, it is difficult to develop adaptive immunity and eliminate the mycotoxins. As a result, the body is likely to experience chronic inflammation and a host of other issues.

Respiratory Impact

Mold enters the body through the skin and through inhalation, making respiratory function a primary target of mold. Once inhaled, mold can quickly colonize the lungs and sinuses as they are optimal growing conditions. This leads to the continual release of mycotoxins. Moreover, biofilms can form around the mold colonies, protecting them from the body’s immune system.

The sinuses are particularly susceptible to mold colonies and many species of Aspergillus have been identified in the sinuses of those with chronic sinus inflammation. Aspergillosis is known to be able to colonize in the lungs of both humans and animals, which causes invasive fungal infections. Because of the respiratory tract’s susceptibility to mold, mold exposure often mirrors allergy symptoms such as coughing, runny nose, sneezing, itchy eyes, and asthma.

Neurological Impact

Once mycotoxins are inhaled, they are stored in the body’s fatty tissue. Given that the brain is approximately 60% fat, mold toxicity can have profound neurological effects. Mycotoxins trigger an inflammatory immune response and this inflammation in the brain can impair cognitive function and lead to symptoms such as fatigue, memory loss, headaches, insomnia, dizziness, anxiety, depression, and more.

Chronic inflammation in the brain, especially when caused by toxins, can cause long-lasting damage. This is because when the brain is in a chronic state of inflammation, glial cells can no longer support neuron health and neural communication. When inflammation is present, glial cells change their cell morphology significantly and activate rapidly. These cells generate reactive oxygen species and release signals to trigger immune cells, which results in a continuation of the body’s inflammatory response. Over time, this leads to the degradation of tissue and of the blood–brain barrier and neurocognitive issues.

Alzheimer’s specialist, Dr. Bredson, MD, has found that one-third of Alzheimer’s Disease patients are considered “Inhalational Alzheimers,” which means their Alzheimer’s is a result of chronic inflammation caused by mold or other toxins. Other diseases that can be caused by mycotoxins include: ADHD, migraines, Parkinson’s, Chronic Fatigue Syndrome, and more.

The Role of Mold in Lyme Disease and Chronic Illness

Mold has a significant negative impact on the immune system, making those with chronic illnesses such as Lyme disease more at risk for developing serious health issues.

Because those with a chronic illness often have a weakened immune system, their body is less likely to be able to fight off mold spores and toxins. When the mold then begins to colonize in the body, patients experience chronic mycotoxin exposure, which reduces the body’s ability to fight infection due to mycotoxins immuno-suppressant effect. Thus, the body’s weakened immune system is forced to fight the chronic illness in addition to mycotoxins, leading to a worsening of symptoms associated with both conditions. Additionally, mold exposure and toxicity elicit an inflammatory response, which worsens chronic conditions such as Lyme, Fibromyalgia, gut dysfunction, and more.

Warning Signs of Mold Toxicity

Mold illness can cause a wide variety of symptoms. Often, it is only the respiratory symptoms that are recognized but it is important to be aware of its profound effects:

  • Fatigue
  • Anxiety
  • Depression
  • Light sensitivity
  • Headaches
  • Blurred vision
  • Dizziness
  • Vertigo
  • Brain fog
  • Memory loss (typically short-term)
  • Chronic congestion or sinus infections
  • Coughing
  • Abdominal pain
  • Muscle pain and/or joint pain
  • Hormone deficiency
  • Adrenal dysfunction
  • Nose bleeds
  • Environmental sensitivity (chemical sensitivity)
  • Chronic colds, flus, acute infections
  • Nausea
  • Itchy/ red eyes
  • Insomnia
  • Night sweats
  • Temperature dysregulation
  • Weight gain
Seeking Treatment

For over a decade, there has been a consensus in the medical community that regular exposure to mold significantly increases people’s risk for disease. This public health hazard has still not been addressed with the concern it should be as governmental agencies, such as the Institute of Medicine report commissioned by the CDC and released in 2004, have concluded that the primary health concerns with mold are solely respiratory. However, mold can have long-lasting health effects, especially for those dealing with a chronic illness.

If you feel you are suffering from mold toxicity or would like to get tested, contact Holtorf Medical Group today. At Holtorf Medical Group, our physicians are trained to provide you with cutting-edge testing and innovative treatments to properly diagnose and treat your condition, optimize your health, and improve your quality of life.



For more:

Lyme Disease & Biofilms: What You Need to Know

Lyme Disease + Biofilms: What You Need to Know

by Dr. Bill Rawls
Updated 3/30/21

If you’ve tried everything to get well to no avail, chances are you’re feeling frustrated, confused, and exhausted. After all, which stone could you possibly have left unturned? Many people blame their persistent symptoms of chronic Lyme disease on the slimy collections of microorganisms known as biofilms, as suggested in the recent review article in Frontiers in Neurology.

But are biofilms really what’s stopping you from getting better? Here, we’ll take a closer look at these micro-communities to understand what they are and how they contribute to certain chronic illnesses. Though biofilms are interesting, the role they actually play in chronic Lyme disease may be minor.

What Are Biofilms?

Biofilms are colonies of microbes. They chiefly contain bacteria, but biofilms can also include protozoa and fungi. Biofilms form anywhere there is moisture and a surface. In other words, everywhere — including many surfaces inside the human body. The ring inside your toilet bowl and plaque on your teeth are examples of biofilm.

Certain types of bacteria initiate biofilms that can attach to a moist surface with specialized adhesion structures called pili. Once adhered to the surface, bacteria stick together and produce a matrix of slime called extracellular polymeric substance (EPS). After the matrix has been established, other kinds of microbes can join, creating a structured community. To get a sense of how a biofilm operates, imagine a crowded dance floor with bodies squeezed together, forming a uniform mass, swaying to the rhythm of the music.

A polysaccharide shell on the biofilms’ surface protects the organisms inside from starvation, drying out, the immune system, and antibiotics. The surface can include minerals, such as calcium, and blood products, including fibrin. Safe inside the biofilm, microbes are free to mingle and exchange information. Communication between bacteria, called quorum sensing, is accomplished by signaling molecules. Once a community is formed, particular groups of microbes take on specialized roles of performing metabolic functions for the entire unit. For example, water channels develop within the biofilm for moving nutrients and signaling molecules. The biofilm grows by cell division and recruitment of new individuals.

Reasons Microbes Form Biofilms

  • Conserve nutrients and energy and avoid starvation
  • Bypass the host’s immune system
  • Avoid antibiotics
  • Join forces with other microbes and increase the chances of long-term survival

In essence, the biofilm becomes an organism unto itself. Biofilms are as ancient as any lifeform. They were likely the bridge between single-cell organisms and higher multi-cell organisms.

How Biofilms Work

Biofilms cause illness by damaging the surfaces to which they attach. Additionally, if a biofilm matures and becomes massive enough, it can cause obstructions in organs or impede the function of medical equipment such as stents or catheters. Once a biofilm reaches a certain size (maturation II stage), it disperses, allowing inhabitants to spread and colonize other surfaces. As a means of survival, bacteria in the body are always trying to form new biofilms, and the immune system is constantly working to break them down.

The following graphic illustrates the 5 stages of biofilm development:
circle map with arrows connecting five circles. 1. Initial attachment 2. Irreversible attachment 3. Maturation I 4. Maturation II 5. Dispersion

Common Biofilm Diseases

Typical biofilm diseases occur where there are surfaces and moisture present for the biofilm to form. Examples of biofilm diseases include:

  • Bacterial vaginosis: Associated with biofilm in the vaginal wall.
  • Chronic urinary tract infections: Biofilm on the bladder wall is a contributing factor.
  • Middle-ear infections: Biofilms are linked to chronic middle-ear infections.
  • Heart valve infections: Microbes may attach and form biofilms on heart valves or tissues surrounding the heart.
  • Chronic vertigo: Caused by calcium deposits in the inner ear and may be a form of biofilm.
  • Dental plaque and gingivitis: Classic examples of biofilm found in the mouth.
  • Chronic sinusitis and chronic bronchitis: Associated with biofilm in sinuses and bronchial tubes.
  • Arterial plaque buildup: Responsible for heart attacks and stroke, arterial plaques have many characteristics of biofilm and are often found to harbor bacteria.
  • Hospital infections: Indwelling devices such as catheters are associated with biofilms.

Biofilms readily occur in the intestinal tract. In fact, the formation of biofilms in the colon and appendix is quite normal and supported by the immune system.

Is There a Link Between Lyme Disease and Biofilms?

There has been a lot of talk on Lyme forums about Lyme disease being a biofilm disease. This idea stems primarily from a study done in a lab showing Borrelia, the bacteria associated with Lyme disease, could participate in forming a biofilm.

No doubt, Borrelia can form a biofilm inside a test tube. Forming and participating in biofilm is a natural trait for almost any bacteria. Indeed, if you can’t join in on a biofilm, you’re not much of a bacteria. But most of the symptoms associated with chronic Lyme disease aren’t consistent with biofilm diseases. Biofilms cause localized symptoms primarily by damaging the surface they adhere to. Symptoms of chronic Lyme disease are systemic.

White blood cells, red blood cells, and in blood stream, borrelia disrupting immune system communication.

The symptoms of chronic Lyme disease and persistence against antibiotics are best explained by the fact that Borrelia is an intracellular bacteria. When the Borrelia spirochetes enter the bloodstream, they hitch a ride inside white blood cells and travel to tissues throughout the body, including the brain. Once they arrive at targeted tissue sites — heart, brain, joints, muscles — they emerge and infect other cells. Inside the cell, they can lose their wall and become an l-form bacteria. This, and being shielded inside the cell, provide protection from antibiotics and immune system functions.

The bacteria cannibalize the cell to generate new microbes and then emerge to infect other cells.

Symptoms of chronic Lyme disease are caused not only by bacterial activity invading cells, but also by the immune system’s efforts to eliminate cells that have been infected with bacteria.

The concentrations of cells that have been infected with bacteria, compared to normal cells, is not great. Considering the bacteria are a hundred times smaller than our cells, even millions of bacteria spread out among the trillions of cells in the body isn’t a high concentration of bacteria — tissues are only lightly peppered with infected cells. To take out infected cells nestled among normal cells, the immune system targets the abnormal cells with antibodies, but in the process, there is collateral damage to normal cells. In other words, autoimmunity. Research suggests that the autoimmune phenomenon may be a significant driver of symptoms of chronic Lyme disease.

In addition, bacteria manipulating the immune system to generate cytokines and inflammation may be another contributing factor to Lyme disease symptoms. Inflammation breaks down tissues and allows the bacteria to access vital nutrients from our cells.

The fact that chronic Lyme symptoms are most consistent with Borrelia existing as an intracellular bacteria suggests that this is the primary reason as to why Borrelia is persistent in the body. Participation in biofilm and being able to form an antibiotic resistant cyst form likely also contribute to antibiotic resistance, but these may not be primary factors.

Biofilms may be most relevant to intestinal symptoms that usually accompany Lyme disease and skin diseases like Morgellons that’s sometimes associated with the tick-borne infection. Calcium deposits in the inner ear causing dizziness may also be related to biofilm.

Dealing with Biofilms

Though Lyme disease is not a standard biofilm disease per se, there’s nothing wrong with supporting the body’s ability to deal with biofilms during any illness. A healthy immune system is the best way to slow the formation of biofilm in the body. The immune system is always breaking down new biofilms that start to form — it’s part of the everyday struggle of life.

The following are my preferred herbs and supplements to supports the body’s efforts to break down biofilms:

zoomed in pineapple skin

1. Proteases

Proteases are enzymes that break down proteins. It is thought that proteases may be beneficial for breaking down the outer coating of a biofilm, especially in the gut. Common natural proteases that are available in supplement form include bromelain (from pineapple), nattokinase, and serrapeptidase. Proteases also break down immune complexes in the blood and reduce inflammation.

cell diagram of N-Acetyl Cysteine (NAC)

2. N-Acetyl Cysteine (NAC)

A potent antioxidant and anti-inflammatory, n-acetyl cysteine (NAC)is known to break up mucus and may also play a role in dissolving biofilms. It also protects nerve tissue and liver function.

three overlapping image circles. cats claw, japanese knotweed, and chinese skullcap

3. Antimicrobial Herbs

The best way to overcome chronic Lyme disease, including the possibility of biofilm formation, is persistent use of herbs with antimicrobial properties. The herbal advantage is that herbs suppress pathogens without disrupting normal flora and therefore can be used for prolonged periods of time (years) without adverse side effects. Herbs also protect cells from free radical damage and other stressors, modulate immune system functions, reduce inflammation, and erode away at biofilms. Common herbs with documented activity against Borrelia include Japanese knotweed, cat’s claw, and Chinese skullcap.

The Bottom Line

Ultimately, the idea that patients must aggressively hammer away at biofilms with harsh drugs and treatments to see improvements in symptoms may not be a sustainable or beneficial approach for most people. Blasting biofilms with strong chemicals and potent antibiotics has the potential to backfire because it can disrupt the balance of normal flora in the body and inadvertently suppress immune system functions.

In contrast, by supporting a healthy immune system with herbal therapy and a few select supplements, you can etch away at biofilms that may be present, while addressing other more significant underlying causes of your symptomsuntil they’re gone without setting yourself back for days or weeks at a time.

Dr. Rawls is a physician who overcame Lyme disease through natural herbal therapy. You can learn more about Lyme disease in Dr. Rawls’ new best selling book, Unlocking Lyme.

You can also learn about Dr. Rawls’ personal journey in overcoming Lyme disease and fibromyalgia in his popular blog post, My Chronic Lyme Journey.

1. Supi et al, Characterization of Biofilm Formation by Borrelia burgdorferi, In Vitro, PLOS-one, Oct 24, 2012
2. Karatan E, Watnick P, Signals, Regulatory Networks, and Materials That Build and Break Bacterial Biofilms, Microbiology and Molecular Biology Reviews, June 2009, Vol 73 (2), P. 310-347
3. Lennox J, Biofilm Development, Biofilms: The Hypertextbook, Web, May 2011
4. Costerton, Stewart, Greenburg, Bacterial Biofilms: A Common Cause of Persistent Infections, Science, May 1999, Vol 284 (5418) p. 1318-1322
5. Sapi, MacDonald, Biofilms of Borrelia burgdorferi in chronic cutaneous borreliosis, Am J Clin Pathol, 2008, 129, p. 988-989
6. Hoyle, Costerton, Bacterial resistance to antibiotics: the role of biofilms, Prog Drug Res, 1991, 37, p. 91-105
7. Kurti, Munderloh, Ashstrand, Colony formation and morphology in Borrelia burgdorferi, J Clin Microbiol, 1987, 25, p. 2054-2058
8. Figure copyright 2006 Keith Kasnot, MA, CMI, FAMI
9. Image source:
10. Di Domenico EG, Cavallo I, Bordignon V, et al. The Emerging Role of Microbial Biofilm in Lyme Neuroborreliosis. Front Neurol. 2018;9:1048. Published 2018 Dec 3. doi: 10.3389/fneur.2018.01048
11. Datar A, Kaur N, Patel S, Luecke D, Sapi E. In Vitro Effectiveness of Samento and Banderol Herbal Extracts on the Different Morphological Forms of Borrelia Burgdorferi. Townsend Letter, the Examiner of Alternative Medicine. July 27, 2010.
12. Rudenko N, Golovchenko M, Kybicova K, Vancova M. Metamorphoses of Lyme disease spirochetes: phenomenon of Borrelia persisters. Parasit Vectors. 2019;12(1):237. Published 2019 May 16. doi: 10.1186/s13071-019-3495-7
13. Markova ND. L-form bacteria cohabitants in human blood: significance for health and diseases. Discov Med. 2017 May;23(128):305-313. PMID: 28715646.
14. Rivera OJ, Nookala V. Lyme Carditis. 2020 Oct 3. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan–. PMID: 31536195.
Patients often struggle with whether they should go after biofilms or not.  I had this same struggle myself and still do not have a definitive answer.  I know patients who didn’t notice a thing after treating biofilms and others who had great progress.  Herein lies the challenge: what works for one, doesn’t work for another.  We are a conundrum to treat for sure.
I’ve taken everything mentioned in Dr. Rawl’s article for various reasons throughout my journey.  The ones I’ve stuck with are NAC and proteases as both supplements do a myriad of things simultaneously.
I’ll never forget Master Herbalist Stephen Buhner’s advice in the need to find a sophisticated treatment that does many things simultaneously.  I believe he’s absolutely correct.  This saves time and money.
For more on NAC:

For more on Systemic Enzymes (proteases):

Study of a Potential Test for Persistent Lyme Disease


Study of a Potential Test for Persistent Lyme Disease

Thanks to the enthusiastic response from the Lyme community, this study has met its current enrollment goal. Therefore, Flightpath Biosciences’ Study of a Potential Test for Persistent Lyme Disease will not be accepting any more applications at this time.

We’ll keep you posted as the project proceeds or if we reopen the study for further enrollment.

For questions related to this study, please contact:


Fatigue, muscles aches, brain fog—are these symptoms of chronic Lyme disease, or merely side effects of the daily grind of human existence? It’s hard to tell. 

Chronic Lyme disease, also known as post-treatment Lyme disease syndrome or PTLDS, is incredibly hard to diagnose because symptoms vary greatly, and there is currently no biological test to detect the disease.

Now, Kim Lewis, University Distinguished Professor of biology and director of the Antimicrobial Discovery Center at Northeastern, has proposed a new way to objectively diagnose this elusive disease by analyzing the microbes in a patient’s gut. 

(Go to link for article)



Lewis states there are about 800,000 people in America living with PTLDS.  I have written before about this confusing moniker that it means different things to different people.  For instance, microbiologist Holly Ahern states there are two groups of patients: those diagnosed and treated early and those diagnosed and treated late.  The PTLDS label only concerns the first group and only represents about 10-20% of people going on with persistent symptoms.  These low percentages are typically what researchers are referring to.  The label leaves out a much larger group (30-40%) that is diagnosed and treated late.  

This second group represents nearly all the patients I work with that never gets addressed by research because their cases are sticky, hard to define, and by nature don’t fit well into a research study design.

According to Lewis, people with PTLDS have an abundance of a type of bacteria called Blautia and a suppression of a type of bacteria called Bacteroides (which explains why Lyme/MSIDS patients suffer with inflammation, digestion, improper immune responses, depression and anxiety).

Unfortunately, this bacterial disregulation is also seen in many other diseases.

Flightpath is also working on making an oral form of the antibiotic azlollicin available, which has demonstrated in vivo efficacy in mice by significantly inhibiting the growth of drug-tolerant Borrelia burgdorferi (Bb) bacteria better than doxycycline (the standard of care), and reducing inflammation.