Archive for the ‘Anaplasmosis’ Category

Cats Carry All Types of Ticks & Tick-Borne Diseases


Did you know the cat you may be cuddling with on your couch every evening could be infected with a host of tick-borne diseases? Unlike our canine friends, cats are typically not symptomatic when it comes to such diseases. But as researchers have found, that doesn’t mean they are free from disease.

Updated: April 22, 2019

In a study by Shannon and colleagues, 160 ticks and blood samples were collected from 70 healthy cats brought to the Mid Atlantic Cat Hospital in Queenstown, Maryland. [1]

The authors found that the cats were carrying 3 species of ticks including 83 Lone Star ticks (Amblyomma americanum), 7 American dog ticks (Dermacentor variabilis) and 70 black-legged ticks (Ixodes scapularis.)

Out of the 160 ticks, 22 (13.8%) tested positive by PCR for Bartonella spp., Borrelia burgdorferi, or Borrelia miyamotoi. However, only 25 of the 70 cats were able to be fully tested.

Nine of those cats (36%) were positive for exposure to at least one of the following tick-borne pathogens: Borrelia burgdorferi, Ehrlichia ewingii, Anaplasma phagocytophilum, Borrelia miyamotoi, Bartonella clarridgeiae and Bartonella henselae.

“We also found at least one cat blood sample to test positive for antibodies to each of the four tick-borne agents we screened for,” the authors state.

According to the authors’ review of the literature, the risk to pet owners is unclear. “Pet ownership has been implicated in vector-borne pathogen transmission and has been identified as a potential risk factor for such diseases in some studies, but not others.”

Nevertheless, screening for ticks may prove helpful, providing advanced warning of disease risk to humans “upon recognition of an uncommon or unexpected pathogen in a pet or pet-derived parasite,” Shannon concludes.

Author’s note: Keeping your cat indoors can prevent it from picking up ticks that could be passed onto you or other family members. 

  1. Shannon AB, Rucinsky R, Gaff HD, Brinkerhoff RJ. Borrelia miyamotoi, Other Vector-Borne Agents in Cat Blood and Ticks in Eastern Maryland. EcoHealth. 2017.



For some reason many people believe cats are immune to tick bites.  This article clearly shows this to be a fallacy.  Besides being bitten by ticks and infected with the pathogens within them, cats are known for carrying and transmitting Bartonella:

As you can see from these links, Bartonella is far more than swollen lymph nodes, and many do not even present with that symptom at all.  If you suspect Bartonella, please print and fill out this questionnaire:  If you have a preponderance of symptoms, take this to your doctor and discuss it.  For Bartonella treatments see:

In my experience, not only do many Lyme patients also have Bartonella, it is often harder to resolve than Lyme.  Testing for these coinfections is just as abysmal as Lyme testing is so knowing symptoms is a must for a clinical diagnosis as many will never test positive.  This website is full of patients who had Bartonella who were negative on testing.

Integrated Tick Management Reduces Ticks by 93% Study Finds

2019 Dec 18. doi: 10.1007/s10493-019-00452-7. [Epub ahead of print]

Evaluating the effectiveness of an integrated tick management approach on multiple pathogen infection in Ixodes scapularis questing nymphs and larvae parasitizing white-footed mice.


We investigated the effectiveness of integrated tick management (ITM) approaches in reducing the burden of infection with Borrelia burgdorferi, Babesia microti, and Anaplasma phagocytophilum in Ixodes scapularis. We found a

  • 52% reduction in encountering a questing nymph in the Metarhizium anisopliae (Met52) and fipronil rodent bait box treatment combination as well as a
  • 51% reduction in the combined white-tailed deer (Odocoileus virginianus) removal, Met52, and fipronil rodent bait box treatment compared to the control treatment.
  • The Met52 and fipronil rodent bait box treatment combination reduced the encounter potential with a questing nymph infected with any pathogen by 53%.
  • Compared to the control treatment, the odds of collecting a parasitizing I. scapularis infected with any pathogen from a white-footed mouse (Peromyscus leucopus) was reduced by 90% in the combined deer removal, Met52, and fipronil rodent bait box treatment and by
  • 93% in the Met52 and fipronil rodent bait box treatment combination.
Our study highlights the utility of these ITM measures in reducing both the abundance of juvenile I. scapularis and infection with the aforementioned pathogens.


For more:


Yarmouth Horse Owner Spreads Word About Little-known Tick-borne Disease

Nova Scotia

Yarmouth horse owner spreads word about little-known tick-borne disease

Sarah LeBlanc’s horse, Sloane, was recently diagnosed with anaplasma

Sarah LeBlanc with her 10-year-old barrel racing horse, Sloane. (Submitted by Sarah LeBlanc)

A Yarmouth, N.S., horse owner wants others to know about anaplasma, a tick-borne disease that her horse, Sloane, contracted before Halloween.

“If you see swollen legs on your horse, it means something, do something,” said Sarah LeBlanc, Sloane’s owner.

Anaplasma causes serious fevers, loss of appetite and swollen and painful limbs. If a fever is left untreated, it can lead to other complications like laminitis, which can damage a horse’s hooves. Anaplasma is rarely fatal and usually responds well to treatment.

On Monday, LeBlanc received confirmation that a blood test determined Sloane had anaplasma and Lyme disease.

LeBlanc said she first realized something was wrong with her 10-year-old barrel racing horse last Wednesday.

Sloane is responding well to treatment of anaplasma. Her owner, Sarah LeBlanc, says she first knew something was wrong when she saw Sloane’s legs were swollen. (Submitted by Sarah LeBlanc)

“If you have a horse with four swollen legs, it’s not the result of an injury, it’s got to be the result of a side effect or something,” LeBlanc said. “And so I thought I would give it 24 hours to see if it goes away on its own.”

Swollen legs aside, LeBlanc said Sloane seemed pretty normal and she was still eating.

But when a horse farrier, a person whose job it is to put horseshoes on horses, saw Sloane that night, she was advised to speak with a vet as soon as possible.

LeBlanc called Dr. Megan Crouse, a veterinarian from the South Shore Veterinary Services in Wileville, N.S., and described the symptoms. Crouse told her it could be anaplasma, a disease LeBlanc had never heard of.

Crouse told CBC News in an email that anaplasma pops up at this time of year. She said it can be treated with antibiotics, anti-inflammatory medications and supportive care.

Local vet sees uptick in anaplasma cases

Crouse said her clinic has treated between 10 to 12 cases this year and all have been in the last four weeks. She said it is spread through tick bites.

“The carrier must bite and be attached for 24 to 48 hours to spread infection,” Crouse said.

Tick prevention is key.

“Things such as keeping pastures clipped short, using fly/tick repellent daily, daily thorough tick checks are all things to help prevent exposure,” she said.

LeBlanc said she always checks Sloane and her other horse for ticks. She said there are a lot of them in her area.

“I’ve been picking hundreds of the ticks off the horses,” she said.

LeBlanc posted about the ordeal on Facebook last week and as of Monday, it has been shared about 500 times.

“It’s an illness, it’s a disease and you just can’t ignore it and let it go untreated,” she said.

The good news, LeBlanc said, is Sloane’s temperature continues to be normal and she’s responding well to the medicine.

“She seems happy and content, so she is certainly on the road to recovery,” she said.


For more on Anaplasma:



Is Rickettsia the Same as Lyme Disease?

Is Rickettsia The Same As Lyme Disease?

What Is Rickettsia?

Rickettsial diseases or rickettsioses are infections caused by various bacteria belonging to the genus Rickettsia. These bacteria are transmitted through the bites of certain hard-bodied ticks and some other arthropods. Rickettsial diseases are not to be confused with rickets, which is a condition affecting the bones and resulting from vitamin D deficiency.

The infections caused by Rickettsia bacteria have traditionally been classified into two groups: spotted fever and typhus. However, they’re sometimes divided into further categories. Either way, all groups include species of pathogens that can infect humans. Although Rickettsia bacteria can be found worldwide, the most common rickettsial illnesses are normally contracted in Africa and Asia.

Lyme disease is also transmitted to humans by ticks. It’s the most common tick-borne illness in the northern hemisphere. However, Lyme isn’t a rickettsial disease, since it’s caused by a bacterium of a different genus: Borrelia burgdorferi.

However, the same tick that carries Rickettsia bacteria might also be infected with Borrelia burgdorferi. Therefore, it’s possible to contract both illnesses via one tick bite. Therefore, the answer to question ‘is Rickettsia a Lyme co-infection?’ is that yes – rickettsiosis can be a potential co-infection of Lyme disease.

What Are The Symptoms of Rickettsia Diseases?

Some of the most common rickettsial diseases are Rocky Mountain spotted fever, anaplasmosis, ehrlichiosis and typhus. All of these are generally difficult to diagnose. Some of them rarely cause symptoms, and most of them only cause moderate illness even when symptomatic. However, certain forms of spotted fever and typhus may be fatal if left unrecognised and untreated. The sooner these illnesses are diagnosed, the easier they are to treat using antibiotics.

The clinical presentation of rickettsial diseases varies greatly. Even infections caused by the same species of bacteria may produce different symptoms in different patients. Nonetheless, the most common symptoms include

  • fever
  • headache
  • fatigue
  • malaise
  • nausea
  • vomiting
  • rashes and eschar (a piece of dry and dark dead skin at the site of the bite). These tend to develop within two weeks after the bacteria have entered the body.

African tick bite fever is one of the mildest forms of rickettsiosis. Patients usually present with fever, headache, muscle pain and an eschar shortly after contracting the disease during a visit to southern Africa.

Fever is a common symptom of all rickettsial diseases.


Mediterranean spotted fever is a serious and potentially life-threatening illness. It’s prevalent in the Mediterranean region, including northern Africa. In addition to fever, rashes and an eschar are typical signs of the illness.

Patients with Rocky Mountain spotted fever often experience fever, headache, nausea, and stomach pain. A rash at the site of the bite is also commonly seen, but eschars aren’t usually present.

The only common symptom of murine or endemic typhus is fever. About half of all patients also develop a rash. Scrub typhus can be contracted in Asia, and it’s characterised by a severe fever, headache and muscle pain. An eschar, cough, enlarged lymph nodes and encephalitis (inflammation of the brain) may also occur in some patients.

The symptoms of ehrlichiosis and anaplasmosis are similar to those of other rickettsial diseases. However, they’re also known to significantly reduce white blood cell count in affected people.

Is Rickettsia The Same As Lyme Disease?

Rickettsiosis and Lyme disease share several symptoms in their early stages, such as fever, headache, fatigue, malaise and muscle pain. Moreover, all of these symptoms also overlap with those of the flu and other non-specific viral infections, making diagnosis even more challenging.

The only distinctive sign of Lyme disease is the circular bull’s eye rash that develops around the tick bite within a few weeks. However, the rash can also appear elsewhere on the body, and in 20-30% of patients it’s not seen at all.

The diagnosis of Lyme and rickettsial diseases is usually based on a combination of factors, including signs, symptoms, patient history and laboratory tests. Unfortunately, currently there aren’t any completely reliable diagnostic tests available for Lyme disease: in the first weeks after infection, there’s a 60% rate of false negative results. Serological assays for rickettsiosis are more reliable, but these can take 10–12 days to provide a decisive result.

Tests such as serological assays are required to identify rickettsiosis.

What To Do If You Think You’ve Been Infected With Rickettsia

Ticks are very tiny, and their bites aren’t painful. Many people don’t even realise they’ve been bitten.

It’s important to note that being bitten by a tick doesn’t mean you’ve contracted an illness. In fact, out of the approximately 800 different tick species in the world, less than 60 can transmit infections to humans and animals. Most types of tick also have to be attached to the host’s body for an extended period of time in order to pass on any bacteria.

Nevertheless, you must see your doctor if you have a fever and any other flu-like symptoms or a rash shortly after being bitten by a tick. You should also arrange a medical appointment if you don’t recall being bitten but you do experience some suspicious symptoms within a few weeks of returning from a high-risk area. Be sure to tell your doctor about your recent travels, so that they can evaluate the probability of a tick-borne infection and order any appropriate diagnostic tests.



According to information written in Carl Tuttle’s petition against the IDSA, he mentions an article that indicates the persistent form of Lyme disease might be caused by another organism altogether.  By Lorraine Johnson Oct 12, 2016


“The STAT article reports that both Jorge Benach and Allen Steere now say it is time to take a closer look at Rickettsia helvetica’s role in Lyme disease. Benach says the research “should be done” because public health concerns warrant a closer look.”

Tuttle also discusses correspondence between Dr. Alan Steere and Willy Burgdorfer dating back to 1980 discussing serological results of sera tested for various Rickettsia and the Swiss Agent (cgP-09) and (TC P-17) being identified in a number of patients:

And according to Allison Caruana, President of The Mayday Project, borrelia associated with Lyme disease are unlike other borrelia, as these organisms are known for an amorphous slime layer:

She states:

“Dr. Willy Burgdorfer reviewed and tested patient blood samples from Dr. Anderson for C9P09, which is a rickettsial helical Mycoplasma; P09 being a Rickettsia bellii and C9 being a Mycoplasma (FIG. 2).35 This is further supported by the theory that an endosymbiotic infection produces spirochetes that are uncultivable Mycoplasmas, which are also called spirochetes. 1, 22, 31, 32

The “Swiss Agent” is documented by Dr. Willy Burgdorfer (FIG. 3),25 who also wrote a speech on “Pandora’s Box”.5 Although the Swiss Agent paper is associated with the suspected African Swine Flu, Dr. Willy Burgdorfer appears to be famous for leaving clues throughout his work regarding Lyme disease. Upon reviewing the structure of the Lyme disease “Swiss Agent” and the “Pandora Giant Virus”, there is a striking resemblance that deserves further examination.”

I don’t think we actually know precisely what the agent(s) causing Lyme disease is. This would explain why it can’t be picked up in current testing and why many fail treatment.

While it’s true that the early stages can often yield unspecific symptoms, an experienced eye will be able to diagnose a patient with tick borne illness.  Also, please remember that in some patients their only symptoms are psychological:  Any acute onset behavior changes should be suspect. Please don’t mess around with mainstream medicine should this occur. Get to an experienced and recommended ILADS practitioner who understands the mental illness aspect of tick borne disease.

Regarding the “classic” bullseye rash, please know that while it is diagnostic of Lyme disease, in the first ever patient sample, only a quarter had it:

Here this nifty table shows that anywhere from 27-80% get it depending upon who’s counting:


The article’s statement that 20-30% of patients don’t get the rash must be taken from the inaccurate CDC count which is always abysmally low.  No one I work with gets the rash.  No one!

Please read this well written article on why we need to stop treating tick-borne illness like a typical infectious disease:

More on Rickettsia:

Seventeen (6.8%) samples were seropositive for antibodies against at least one pathogen: five for A. phagocytophilum, eight for B. burgdorferi, and four for Rickettsia spp.



Ticks Carrying Multiple Diseases Are ‘Taking Over’ Long Island

Ticks carrying multiple diseases are ‘taking over’ Long Island

Lyme disease isn’t the only awful illness ticks are capable of transmitting.

Superticks can carry up to four different diseases at a time, including Lyme disease. And these insects of mass destruction are becoming especially abundant in Long Island, according to a study published this month in the journal mBio.

“They’ve kind of taken over,” co-author Rafal Tokarz tells The Post.

It means that one bite could potentially give a person Lyme disease as well as illnesses such as potentially life-threatening babesiosis and anaplasmosis. A quarter of the ticks examined in the study had the ability to transmit more than one disease.

“Most people think of Lyme disease when they think of [tick-borne illnesses], and that’s justified, but in Suffolk County alone, ticks can carry four other pathogens,” says Tokarz, an assistant professor of epidemiology at the Center for Infection and Immunity at Columbia’s Mailman School of Public Health.

“Very often, we find sometimes two, even three, of these pathogens [in the same tick],” he says.

He and his fellow researchers are also growing increasingly worried about the Lone Star tick, a species whose saliva can cause an allergic reaction to meat. The tick has migrated in recent years from the southern part of the United States up to Long Island and New England.

One woman in Missouri developed the allergy after a tick bite four years ago — and only just learned it was due to the Lone Star tick.

“It got to the point where my stomach would swell up; I was vomiting,” Kristie Downen said. “The rashes were real bad. It was getting to the point [I told doctors], ‘You’re missing something — I’m still dying.’ ”

There’s currently no treatment for the meat allergy the Lone Star tick can cause, Tokarz says. But, he adds, doctors now need to start testing people who were recently bitten for multiple tick-borne diseases.

“This tick, in particular, has become very troublesome,” Tokarz says. “Thirty, 40 years ago, you hardly ever found them on Long Island. Now they’ve become extremely abundant.”



The number of diseases currently transmitted by ticks is 20 and counting. This article states it’s 16 within the U.S. but these numbers are continually influx with new pathogens continually being discovered:


For the first time, Garg et al. show a 85% probability for multiple infections including not only tick-borne pathogens but also opportunistic microbes such as EBV and other viruses.

“Our findings recognize that microbial infections in patients suffering from TBDs do not follow the one microbe, one disease Germ Theory as 65% of the TBD patients produce immune responses to various microbes.”

The poly microbial issue isn’t even on the radar of most doctors, and this is why the CDC recommendation of 21 days of doxycycline is an absolute farce.

According to this review, 83% of all commercial tests focus only on Lyme (borrelia), despite the fact most of us are infected with more than one microbe.  The review also states it takes 11 different visits to 11 different doctors, utilizing 11 different tests to be properly diagnosed.

When will things change?



Invasive Tick Detected in 6 Additional Tennessee Counties

Invasive Tick Detected in Six Additional Tennessee Counties

Thursday, October 17, 2019

NASHVILLE – The Tennessee Department of Agriculture, United States Department of Agriculture – Animal and Plant Health Inspection Services, Tennessee Department of Health, and University of Tennessee Institute of Agriculture today announced the detection of the invasive Asian longhorned tick in an additional six Tennessee counties:  Knox, Jefferson, Claiborne, Cocke, Putnam, and Sevier. The tick was detected in Union and Roane Counties in May.

The Centers for Disease Control and Prevention reports that there is no evidence to date that the tick has transmitted pathogens to humans in the U.S. There are concerns that the tick may transmit the agent of Theileriosis in cattle, and heavy infestations can cause blood loss and lead to death.

It is important to be aware of this tick, as cattle and canines are particularly susceptible to tick bites. Livestock producers are reminded to be vigilant when purchasing animals, apply a tick treatment to cattle prior to bringing them to your farm, and always use best practices for herd health. Dog owners should provide their animals with a tick preventative and check for ticks.

“Tennessee has numerous animal hosts and a suitable habitat for this tick species,” Dr. R.T. Trout Fryxell, Associate Professor of Medical and Veterinary Entomology for UTIA, said. “While it is always important to be diligent and keep an eye out for all ticks, the unique biology of the Asian longhorned tick helps this species to establish quickly and become a problem.”

Tips to prevent tick bites in animals and livestock include:

·         Coordinate with your veterinarian to determine appropriate pest prevention for pets and livestock.

·         Check pets and livestock for ticks frequently.

·         Remove any ticks by pulling from the attachment site of the tick bite with tweezers.

·         Monitor your pets and livestock for any changes in health

If your animals are bitten by a tick, Dr. Trout Fryxell suggests putting the tick in a ziplock bag, writing down the date and where the tick was most likely encountered, and storing it in a freezer.

For additional information about the longhorned tick in the United States, click here. To find more information on tick-borne diseases, click here.



The Asian Tick has been found in the following 12 states:  Arkansas, Delaware, Kentucky, New Jersey, New York, North Carolina, Virginia, West Virginia, Pennsylvania, Maryland, Connecticut and Tennessee.  This article admits it can transmit Lyme.  It’s also suspected of transmitting the following: Anaplasma, Ehrlichia, Rickettsia, and Borrelia species.

For a great read:

To take this tick lightly would be foolish.


UMD Collaborates on New Department of Defense Grant to Study Tick-borne Infection using 3-D Models of Human Blood Vessels

close up image of blood vessels

An exciting new project by GLA’s Scientific Advisory Board member Dr. Utpal Pal, Professor of Veterinary Medicine at the University of Maryland was announced. This project, funded by a grant from the U.S. Department of Defense, will study tick-borne disease bacteria and how they leave blood vessels to enter the tissue and spread through the body.

Dr. Pal will team up with Dr. Peter Searson of Johns Hopkins University and Dr. J. Stephen Dumler of Uniformed Services University, to build three-dimensional models of blood vessels and to examine endothelial cell interactions with Borrelia burgdorferi and Anaplasma phagocytophilum, which cause serious illnesses transmitted by tick bites. All three researchers bring high-level expertise to a complex question and will use a sophisticated model system not previously used, to answer important questions about pathogen spread.

Full press release here & below:

UMD Collaborates on New Department of Defense Grant to Study Tick-borne Infection using 3-D Models of Human Blood Vessels

Models provide an opportunity to study how pathogens move in and out of the blood like never before, with implications for soldier and civilian health.

COLLEGE PARK, Md. (PRWEB) October 22, 2019

Utpal Pal, professor in Veterinary Medicine at the University of Maryland, is serving as one of three collaborators on a new innovative grant from the Department of Defense, using 3-D bioengineered models of human blood vessels for the first time to examine how tick-borne pathogens move in and out of blood and tissue to cause infection and diseases like Lyme and Anaplasmosis. The team is combining expertise in tick-borne infectious diseases and bioengineering to study mechanisms that cannot be adequately captured using animal models, thus providing new targets for vaccine development and therapeutic options to protect our troops and civilians alike.

Pal is partnering with principal investigator Dr. John Dumler at the Uniformed Services University and co-investigator Peter Searson at John Hopkins University.

“The story starts out with the reports that came out of the Centers for Disease Control and Prevention and the National Institutes of Health documenting the substantial increases in tick-borne diseases in the United States since 2004, and there is evidence that many are growing even faster than reported,” says Dumler.

Between 2004 and 2016, there was a reported four-fold increase in recorded tick-borne diseases, with 80% of vector-borne diseases that affect Americans actually being tick-borne and not mosquito carried. This phenomenon affects everyone in areas where ticks are prevalent, but our troops are disproportionately affected due to their frequent travel across the country and outdoor training exercises. Due to this upswing in tick-borne illness in soldiers and civilians, the United States Department of Defense started the Tick-Borne Disease Research Program as part of their Congressionally Directed Medical Research Program, charged with supporting research in tick-borne illness.

The Borrelia burgdorferi pathogen that causes Lyme disease and the Anaplasma phagocytophilum pathogen that causes Anaplasmosis are two prominent pathogens carried by a common tick in the United States, the Ixodes scapularis or black-legged tick (deer tick). Dumler is an expert in Anaplasma and has been working in tick-borne infection for forty years, while Pal is a world-renowned expert in Borrelia. Both Anaplasma and Borrelia, however, have many unknowns in their infection processes, specifically in determining how pathogens move from the skin to the blood and then from the blood to their target tissues and organs like the brain. These processes are profoundly distinct for each organism as each feature different lifestyles, but it is nearly impossible to do this work effectively in animal models.

“Humans, as incidental hosts, are a big part of the disease process in the life cycle of Borrelia,” says Pal. “How the pathogen enters the vasculature is a critical event because the pathogen is still only present in a small number. And you can’t study this using animal models. Human tissues are too different, and Borrelia can’t cross the blood-brain barrier in rodent models the way it can in humans. Dr. Searson’s models allow us to study these molecular events in a human model for the first time.”

Searson is quite well known for developing tissue-engineered models of human blood vessels and systems, particularly for the brain. With recent advances in stem cell technology, these models have become increasingly complex, with the ability to differentiate cells in a way that couldn’t be done before. While 2-D models have been used in the past to examine pathogen dissemination, this is the first time that 3-D vascular structures have been used in tick-borne infection to study how pathogens are transported by the blood and vascular system in real time, and how they can enter organs and tissues like the brain.

“Right now, there is absolutely no effective model to study this process,” says Pal, “so these 3-D models are essential.” Dumler adds, “Being able to study pathogen dissemination in a configuration that mimics what happens in a real tissue will give a much better picture about what happens in real life.”

The researchers are able to visualize this process in real time, tracking pathogens with fluorescent dyes that are easily viewed under the microscope and recorded for processing and analysis. With Searson’s expertise in creating tissue-engineered models, and Pal and Dumler’s extensive expertise in the biology of tick-borne infections, they are able to manipulate the models with different types of cells and structures to visualize how transfer in and out of the bloodstream occurs.

Everyone involved is excited about the collaboration and the future of this work.

“This is a fantastic opportunity to collaborate with world experts in tick-borne infections on such an important problem,” says Searson.

Pal adds,

“This grant is just the beginning to create a unique program that will use these models to help us to address many questions in tick-borne diseases that are unanswered.”

This work is funded by the Congressionally Directed Medical Research Program’s Tick Borne Disease Research Program, United States Department of Defense Award #W81XWH-19-2-0045.