Archive for the ‘Malaria’ Category

What the Mystery of the Tick-Borne Meat Allergy Could Reveal

https://www.nytimes.com/2018/07/24/magazine/what-the-mystery-of-the-tick-borne-meat-allergy-could-reveal.html

His wife wasn’t home, so he drove himself to the university hospital emergency room near where he lived in Chapel Hill, N.C. As he explained his symptoms at the check-in counter, he began to feel faint, then fell to one knee. An orderly offered a wheelchair. He sat down — and promptly lost consciousness.  (See link for article)

______________

**Comment**

I find it interesting that no one is mentioning the fact ticks have been tweaked in a lab for biowarfare purposes.  

https://madisonarealymesupportgroup.com/2018/03/07/hantavirus-tularemia-warnings-issued-in-san-diego-county/  Tularemia, brucella, certain Rickettsia’s, numerous viruses, some chlamydia’s, and of course mycoplasma have all been weaponized.  https://madisonarealymesupportgroup.com/2015/08/12/connecting-dots-mycoplasma/

http://www.immed.org/infectious%20disease%20reports/InfectDiseaseReport06.11.09update/PHA_Nicolson_0709_v4.07.pdf

“According to Dr. Nicolson, some of the experiments used Mycoplasma while others utilized various “cocktails of microbial agents” such as Mycoplasma, Brucella, and DNA viruses such as Parvovirus B19. This project later become the topic of a book by Dr. Nicolson entitled Project Day Lily.

Dr. Nicolson believes that Mycoplasma fermentans is a naturally occurring microbe. However, some of the strains that exist today have been weaponized. Dr. Nicolson’s research found unusual genes in M. fermentans incognitus that were consistent with a weaponized form of the organism. Weaponzing of an organism is done in an attempt to make a germ more pathogenic, immunosuppressive, resistant to heat and dryness, and to increase its survival rate such that the germ could be used in various types of weapons. Genes which were part of the HIV‐1 envelope gene were found in these Mycoplasma. This means that the infection may not give someone HIV, but that it may result in some of the debilitating symptoms of the HIV disease.”

Regarding the weaponization of tick pathogens:  https://www.lymedisease.org/lymepolicywonk-questioning-governments-role-lyme-disease-make-conspiracy-theorist/  (Go here to read excerpts of an interview with a biologist who acknowledged doing biowarfare work on ticks and mosquitoes.  He admits every time he has a strange illness his physician says it’s probably a rickettsia – an idiopathic condition that never tests positive but symptoms indicate it.)

‘The interview suggests to me that the reason we have such a large problem with our tick population today may be related to military experiments in the 50s. They were part of a biological warfare effort against the Russians. One goal was to figure out how to get ticks to reproduce quickly and abundantly, as well as how to distribute ticks to targeted areas.”

For a lengthy but informative read on the Lyme-Biowarfare connections:  CitizensAlert_Bob13  (Scroll to page 44 to see an executive summary.  Please notice the names of Steere, Barbour, Shapiro, Klempner, and Wormser, the first four are affiliated with the CDC Epidemic Intelligence Service (EIS).  Wormser, lead author of the fraudulent Lyme treatment guidelines, lectures as an expert on biowarefare agents and treatments).  The author of the pdf believes borrelia (Lyme) has been bioweaponized due to (excerpt from pdf footnote):

226 An article was put out by the Associated Press mentioning the study of Lyme disease at a new biowarfare lab at the University of Texas, San Antonio. The article was quickly retracted and mention of Lyme disease was scrubbed from the article. Here is the text of the original article: “A new research lab for bioterrorism opened Monday at the University of Texas at San Antonio. The $10.6 million Margaret Batts Tobin Laboratory Building will provide a 22,000-square-foot facility to study such diseases as anthrax, tularemia, cholera, lyme disease, desert valley fever and other parasitic and fungal diseases. The Centers for Disease Control and Prevention identified these diseases as potential bioterrorism agents.” MSNBC, 11/21/2005. For a comparison of the censored and uncensored articles, see: http://members.iconn.net/~marlae/lyme/featurearticle02.htm

So you tell me.  Could all this lab tweaking have something to do with tick borne illness and allergies?

Phase II Malaria Meds – 100% Cured – Good for Babesia?

https://www.sciencedaily.com/releases/2018/01/180119090342.htm

Promising malaria medication tested
New combination of drugs proves effective and well-tolerated; further studies planned

January 19, 2018

Universitaet Tübingen

Summary:
An international research team has conducted successful phase II clinical tests of a new anti-malaria medication. The treatment led to a cure in 83 cases.

FULL STORY

Researchers tested the efficacy, tolerability and safety of a combination of the drugs Fosmidomycin and Piperaquine. 

An international research team has conducted successful phase II clinical tests of a new anti-malaria medication. The treatment led to a cure in 83 cases. The new combination of drugs was developed by Professor Peter Kremsner of the Tübingen Institute of Tropical Medicine and the company DMG Deutschen Malaria GmbH. The study was recently published in Clinical Infectious Diseases and is freely accessible.

In the study, the researchers tested the efficacy, tolerability and safety of a combination of the drugs Fosmidomycin and Piperaquine. The twofold medication was administered for three days to patients aged one to thirty who were infected with malaria via the Plasmodium falciparum pathogen. In the 83 evaluable cases, there was a 100% cure rate. Patients tolerated the treatment well, and it led to a swift reduction of clinical symptoms. Safety issues were limited to changes in electrocardiogram readings, as had been described for Piperaquine.

The study was conducted at the Centre de Recherches Médicales de Lambaréné (CERMEL) in the African country of Gabon; CERMEL has close ties with the University of Tübingen. Financial support came from the nonprofit organisation Medicines for Malaria Venture (MMV).

“This study represents a milestone in the clinical research into Fosmidomycin,” says Tübingen Professor of Tropical Medicine Peter Kremsner. The substance was originally extracted from Streptomyces lavendulae and today can be produced synthetically. It blocks a metabolic pathway for the production of Isoprenoid in the malaria pathogen. This makes the malaria pathogen unable to metabolize or reproduce. Because Isoprenoids are formed via a different synthesis path in the human body, humans have no target structures for Fosmidomycin. For this reason humans tolerate the drug well and suffer barely any side effects. In addition, this unique mechanism excludes the possibility of cross-resistance to the drugs used in earlier malaria treatments.

The new combination meets WHO guidelines for combination therapies. The two drugs mechanisms against differing target structures means that they attack the parasite in the bloodstream independently of one another. This meets WHO requirements for a fast and effective treatment of the acute phase of infection, and for protection against relapse due to reappearance of the infection. The researchers say the effective mechanism helps to delay the formation of a possible resistance. Further studies are in planning to optimize dose.

Journal Reference:

Ghyslain Mombo-Ngoma, Jonathan Remppis, Moritz Sievers, Rella Zoleko Manego, Lilian Endamne, Lumeka Kabwende, Luzia Veletzky, The Trong Nguyen, Mirjam Groger, Felix Lötsch, Johannes Mischlinger, Lena Flohr, Johanna Kim, Chiara Cattaneo, David Hutchinson, Stephan Duparc, Moehrle Joerg, Thirumalaisamy P Velavan, Bertrand Lell, Michael Ramharter, Ayola Akim Adegnika, Benjamin Mordmüller, Peter G Kremsner. Efficacy and safety of fosmidomycin-piperaquine as non-artemisinin-based combination therapy for uncomplicated falciparum malaria – A single-arm, age-de-escalation proof of concept study in Gabon. Clinical Infectious Diseases, 2017; DOI: 10.1093/cid/cix1122

https://clinicaltrials.gov/ct2/show/NCT02198807    Evaluation of Fosmidomycin and Piperaquine in the Treatment of Acute Falciparum Malaria (FOSPIP)
Verified June 2015 by Jomaa Pharma GmbH.

Collaborator:
Centre de Recherche Médicale de Lambaréné

Brief Summary:
The objective of this study is to explore the role of fosmidomycin and piperaquine as non-artemisinin-based combination therapy for acute uncomplicated Plasmodium falciparum when administered over three days.
Together, fosmidomycin and piperaquine fulfil the WHO criteria for combination therapy by meeting the three key parameters of having different modes of action and different biochemical targets while exhibiting independent blood schizonticidal activity. Like the artemisinins, fosmidomycin is fast-acting, has an excellent safety record and is active against existing drug-resistant parasites. Piperaquine has a long half life protecting fosmidomycin as a much shorter lived molecule against selection of resistant parasites and will provide post-treatment prophylaxis.

Experimental: Fosmidomycin-Piperaquine
Fosmidomycin sodium capsules 450 mg, dosage: 30mg/kg twice daily for 3 days Piperaquine phosphate tablets 320 mg, dosage: 16 mg/kg once a day for 3 days

______________

**Comment**

It appears this works for Babesia as well:  http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0019334&bw=1  Babesia divergens, a related parasite that also infects human erythrocytes and is also known to induce an increase in membrane permeability, displays a similar susceptibility and uptake behavior with regard to the drug. In contrast, Toxoplasma gondii-infected cells do apparently not take up the compounds, and the drugs are inactive against the liver stages of Plasmodium berghei, a mouse malaria parasite.

The big caveat; however, is that many Lyme/MSIDS patients are persistently infected with Babesia and need far more than 3 days for acute treatment:  https://madisonarealymesupportgroup.com/2016/01/16/babesia-treatment/  Dr. Krause published in the New England Journal of Medicine that when a patient has Lyme and Babesia, Lyme is found three-times more frequently in the blood, proving Babesia suppresses the immune system.

Testing which is poor as these organisms are not often found in high enough numbers in the blood, as well as people present subclinically. In other words, their Lyme case is more severe and they have malarial-type symptoms, but they can’t find Babesia in the blood in a Giemsa stain. It takes a trained eye to identify Babesia, which produces a Maltese Cross form, which may or may not be present in a particular smear. Also, doctors have been taught that besides the day and night sweats and chills, patients are supposed to get hemolytic anemia and their liver functions go up or their platelet count might go down (thrombocytopenia). The fly in the ointment is that only certain strains of Babesia do this. Many strains do not cause these symptoms – but doctors aren’t educated on these finer points. Also, to hide from the immune system, the various species produce offspring that have different exterior proteins, or genotypes. http://www.townsendletter.com/July2015/babesia0715_2.html According to Dr. Schaller, there is immense variation and pre-2015 treatments were “weak and showed ignorance of the power of Babesia – it is vastly harder to kill than malaria.”

 

Artesunate on Short Term Memory in Lyme Borreliosis

http://www.medical-hypotheses.com/article/S0306-9877(17)30288-8/fulltext

Lyme borreliosis is associated with memory deficits. While this may be related to cerebral infection by Borrelia bacteria, it may also be caused by concomitant co-infection by Babesia protozoa. The anti-malarial artemisinin-derivative artesunate has been shown to be effective against a number of Babesia species and to have efficacy against human cerebral malaria. We hypothesised that concomitant administration of artesunate in Lyme borreliosis patients would help alleviate the severity of self-reported short-term memory impairment. This hypothesis was tested in a small pilot study in which patients were treated with both an intravenous antibiotic and oral artesunate (20 mg four times per day); treatment was associated with a reduction in the severity of short-term memory difficulties (P ≃ 0.08). In light of these findings, we recommend that a formal randomised, placebo-controlled study be carried out.

 

For more on Babesia:  https://madisonarealymesupportgroup.com/2016/01/16/babesia-treatment/

More on Lyme:  https://madisonarealymesupportgroup.com/2016/02/13/lyme-disease-treatment/

Wolbachia – The Next Frankenstein?

Transmission electron micrograph of Wolachia within an insect cell

Credit:  Public Library of Science/Scott O’Neill

The latest in the effort for world domination over bugs and the diseases they carry is Wolbachia, a Gram-negative bacterium of the family Rickettsiales first found in 1924 and in 60% of all the insects, including some mosquitoes, crustaceans, and nematodes (worms). For those that like numbers, that’s over 1 million species of insects and other invertebrates. It is one of the most infectious bacterial genera on earth and was largely unknown until the 90’s due to its evasion tactics. It’s favorite hosts are filarial nematodes and arthropods.

Wolachia obtains nutrients through symbiotic relationships with its host. In arthropods it affects reproductive abilities by male killing, parthenogenesis, cytoplasmic incompatibility and feminization. However, if Wolbachia is removed from nematodes, the worms become infertile or die. These abilities are what make it so appealing for insect controlcytoplasmic incompatibility, which essentially means it results in sperm and eggs being unable to form viable offering.

http://www.slideserve.com/babu/wolbachia  (Nifty slide show here)

It also makes it appealing for use in human diseases such as elephantiasis and River Blindness caused by filarial nematodes, which are treated with antibiotics (doxycycline) targeting Wolbachia which in turn negatively impacts the worms. Traditional treatment for lymphatic Filariasis is Ivermectin but they also use chemotherapy to disrupt the interactions between Wolbachia and nematodes. This anti-Wolbachia strategy is a game-changer for treating onchocerciasis and lymphatic filariasis.  https://www.sciencedaily.com/releases/2017/03/170316120451.htm

Lyme/MSIDS patients often have nematode involvement.

https://microbewiki.kenyon.edu/index.php/Wolbachiahttps://www.psychologytoday.com/blog/emerging-diseases/200902/tick-menagerie-lyme-isnt-the-only-disease-you-can-get-tick  Both Willy Burgdorfer, the discoverer of the Lyme bacterium, as well as Richard Ostfeld, an animal ecologist found nematode worms in ticks. Since then, some provocative research involving nematodes, Lyme/MSIDS, dementia, and Alzheimer’s has been done.

https://madisonarealymesupportgroup.com/2016/06/03/borrelia-hiding-in-worms-causing-chronic-brain-diseases/https://madisonarealymesupportgroup.com/2016/08/09/dr-paul-duray-research-fellowship-foundation-some-great-research-being-done-on-lyme-disease/https://madisonarealymesupportgroup.com/2016/07/10/greg-lee-excellent-article-on-strategies-for-neurological-lyme/https://madisonarealymesupportgroup.com/2015/10/18/psychiatric-lymemsids/

https://www.scientificamerican.com/article/how-a-tiny-bacterium-called-wolbachia-could-defeat-dengue/  Yet, according to many, Wolbachia is the next eradicator of Dengue Fever and possibly Malaria, chikungunya, and yellow fever because it stops the virus from replicating inside mosquitoes that transmit the diseases. The approach is also believed to have potential for other vector-borne diseases like sleeping sickness transmitted by the tsetse fly.  Evidently, Wolbachia does not infect the Aedes aegypti mosquito naturally, so researchers have been infecting mosquitoes in the lab and releasing them into the wild since 2011. The article states it hopes that the method works and expects infection rates in people to drop and hopes that the mosquitoes will pass the bacterium to their offspring, despite it disappearing after a generation or two of breeding and needing to “condition” the microbes to get them used to living in mosquitoes before injecting them. They also state Wolbachia is

“largely benign for mosquitoes and the environment,” and “To humans, Wolbachia poses no apparent threat.”

Their work has shown that the bacterium resides only within the cells of insects and other arthropods. They also state that tests on spiders and geckos that have eaten Wolbachia mosquitoes are just fine and show no symptoms. An independent risk assessment by the Commonwealth Scientific and Industrial Research Organizatioin (CSIRO), Australia’s national science agency, concluded that,

“Release of Wolbachia mosquitoes would have negligible risk to people and the environment.”

Interestingly, trials are underway in Vietnam, Indonesia, and now Brazil.

They state that scaling up operations to rear enough Wolbachia mosquitoes is too labor-intensive and in Cairns they are going to put Wolbachia mosquito eggs right into the environment. Evidently, other researchers are wanting to release genetically modified (GMO) mosquitoes that carry a lethal gene, and they’ve done it, and it’s causing an uproar:   http://america.aljazeera.com/articles/2013/11/9/genetically-modifiedmosquitoessetoffuproarinfloridakeys.html

http://www.naturalnews.com/2017-07-25-googles-sister-company-releasing-20-million-mosquitoes-infected-with-fertility-destroying-bacteria-depopulation-experiment.html  As of July 14, 2017, Google’s bio-lab, Verily Life Sciences,  started releasing Wolbachia laced mosquitoes in California as part of project, Debug Fresno to reduce the mosquito population.

http://www.greenmedinfo.com/blog/research-exposes-new-health-risks-genetically-modified-mosquitoes-and-salmon  Numerous studies show unexpected insertions and deletions which can translate into possible toxins, allergens, carcinogens, and other changes.  Science can not predict the real-life consequences on global pattens of gene function.

Even the European count decides CRISPR plants are GMOS and should be subjected to the same controls:  https://www.technologyreview.com/the-download/611716/in-blow-to-new-tech-europe-court-decides-crispr-plants-are-gmos/

“It means for all the new inventions … you would need to go through the lengthy approval process of the European Union,” Kai Purnhagen, an expert at Wageningen University in the Netherlands, told Nature.

So, why question the use of Wolbachia as a bio-control?

For Lyme/MSIDS & chronically ill patients, 3 words: worms and inflammation.

Dogs treated for heart worm (D. immitis) have trouble due to the heart worm medication causing Wolbachia to be released into the blood and tissues causing severe Inflammation in pulmonary artery endothelium which may form thrombi and interstitial inflammation. Wolbachia also activates pro inflammatory cytokines. Pets treated with tetracycline a month prior to heart worm treatment will kill some D. immitis as well as suppress worm production. When given after heart worm medication, it may decrease the inflammation from Wolbachia kill off.
http://www.critterology.com/articles/wolbachia-and-their-role-heartworm-disease-and-treatment

The words worms and inflammation should cause every Lyme/MSIDS patient to pause. Many of us are put on expensive anthelmintics like albendazole, ivermectin, Pin X, and praziquantel to get rid of worms and are told to avoid anything causing inflammation due to the fact we have enough of it already. We go on special anti-inflammatory diets and take systemic enzymes and herbs to try and lower inflammation.   https://madisonarealymesupportgroup.com/2016/04/22/systemic-enzymes/

Seems to me, many MSIDS/LYME patients when treated with anthelmintics, will have Wolbachia released into their blood and tissues causing wide spread inflammation, similarly to dogs.

And that’s not all.

According to a study by Penn State, mosquitoes infected with Wolbachia are more likely to become infected with West Nile – which will then be transmitted to humans.

“This is the first study to demonstrate that Wolbachia can enhance a human pathogen in a mosquito, one researcher said.

“The results suggest that caution should be used when releasing Wolbachia-infected mosquitoes into nature to control vector-borne diseases of humans.” “Multiple studies suggest that Wolbachia may enhance some Plasmodium parasites in mosquitoes, thus increasing the frequency of malaria transmission to rodents and birds,” he said.

The study states that caution should be used when releasing Wolbachia-infected mosquitoes into nature. https://www.sciencedaily.com/releases/2014/07/140710141628.htm

So besides very probable wide spread inflammation, and that other diseases may become more prevalent due to Wolbachia laced mosquitoes, studies show Wolbachia enhances Malaria in mosquitos. Lyme/MSIDS patients are often co-infected with Babesia, a malarial-like parasite that requires similar treatment and has been found to make Lyme (borrelia) much worse. It is my contention that the reason many are not getting well is they are not being treated for the numerous co-infections.  Some Lyme/MSIDS patients have Malaria and/or Babesia as well as Lyme.

Regardless of what the CDC states, all the doxycycline in the world is not going to cure this complicated and complex illness.

Lastly, with Brazil’s recent explosion of microcephaly, the introduction of yet another man-made intervention (Wolbachia laced mosquitos) should be considered in evaluating potential causes and cofactors. And while the CDC is bound and determined to blame the benign virus, Zika, there are numerous other factors that few are considering – as well as the synergistic effect of all the variables combined. Microcephaly could very well be a perfect storm of events.
https://madisonarealymesupportgroup.com/2016/12/21/how-zika-got-the-blame/https://madisonarealymesupportgroup.com/2016/03/04/health-policy-recap/https://madisonarealymesupportgroup.com/2016/03/08/fixation-on-zikapolio/

I hate bugs as much as the next person, but careful long-term studies of Wolbachia are required here.

https://www.ncbi.nlm.nih.gov/pubmed/20394659  “Despite the intimate association of B. burgdorferi and I. scapularis, the population structure, evolutionary history, and historical biogeography of the pathogen are all contrary to its arthropod vector.

In short, borrelia (as well as numerous pathogens associated with Lyme/MSIDS), is a smart survivor.

While borrelia have been around forever with 300 strains and counting worldwide, epidemics, such as what happened with Lyme Disease in Connecticut are not caused by genetics but by environmental toxins – in this case, bacteria, viruses, funguses, and stuff not even named yet.

Circling back to Wolbachia.

Hopefully it is evident that many man-made interventions have been introduced into the environment causing important health ramifications: Wolbachia laced mosquitoes and eggs, GMO mosquitoes including CRISPR, and in the case of Zika in Brazil, whole-cell pertussis vaccinations (DTap) for pregnant women up to 20 days prior to expected date of birth, a pyriproxyfen based pesticide applied by the State in Brazil on drinking water, as well as aerial sprays of the insect growth regulators Altosid and VectoBac (Aquabac, Teknar, and LarvX, along with 25 other Bti products registered for use in the U.S.) in New York (Brooklyn, Queens, Staten Island, and The Bronx) to combat Zika. “We feel it’s critical that the scientific community consider the potential hazards of all off-target mutations caused by CRISPR, including single nucleotide mutations and mutations in non-coding regions of the genome … Researchers who aren’t using whole genome sequencing to find off-target effects may be missing potentially important mutations. Even a single nucleotide change can have a huge impact.”  http://articles.mercola.com/sites/articles/archive/2017/06/13/crispr-gene-editing-dangers.aspx?utm_source=dnl&utm_medium=email&utm_content=art3&utm_campaign=20170613Z1_UCM&et_cid=DM147520&et_rid=2042753642

All of this is big, BIG business.

Is the introduction of Wolbachia another puzzle piece in the perfect storm of events causing or exacerbating human health issues?

BTW:  Since 2017, ZAP Males® which are live male mosquitoes infected with the ZAP strain, a particular strain of the Wolbachia bacterium have a time-limited registration allowing them to be sold for five years in the District of Columbia and the following 20 states: California, Connecticut, Delaware, Illinois, Indiana, Kentucky, Massachusetts, Maine, Maryland, Missouri, New Hampshire, New Jersey, Nevada, New York, Ohio, Pennsylvania, Rhode Island, Tennessee, Vermont, and West Virginia.

Infected males mate with females, which then produce offspring that do not survive. (Male mosquitoes do not bite people.) https://www.ncipmc.org/connection/?p=4065

The jury’s still out, but it’s not looking good – particularly for the chronically ill.

The Kite Mosquito Patch

Approximately 2 min.

http://www.kitepatch.com/kite-patch

Dr. Anandasankar Ray and his team from the University of California, Riverside, has developed the Kite Patch, a small patch worn on clothing to protect against mosquitos.  The patch blocks the mosquitoes’ ability to track and detect humans for up to 48 hours.  It should be for sale in 2017.  http://magazine.ucr.edu/44

All Kite products are free from DEET or any other potentially harmful or toxic chemicals.  The company is committed to replacing outdated and potentially unhealthy repellents that have dominated the market for decades.

The patch could help protect against malaria, West Nile, Dengue fever, and other mosquito-borne diseases.

http://www.nature.com/nature/journal/v474/n7349/full/nature10081.html  Journal article.

http://well.blogs.nytimes.com/2015/08/11/high-tech-hope-for-repelling-mosquitoes/?_r=0  One person’s review.