Archive for the ‘Borrelia Miyamotoi (Relapsing Fever Group)’ Category

We Have No Idea How Bad the US Tick Problem Is

https://www.wired.com/story/we-have-no-idea-how-bad-the-us-tick-problem-is/
AUTHOR: MEGAN MOLTENIMEGAN MOLTENI
SCIENCE
7.04.18

WE HAVE NO IDEA HOW BAD THE US TICK PROBLEM IS

WHEN RICK OSTFELD gets bitten by a tick, he knows right away. After decades studying tick-borne diseases as an ecologist at the Cary Institute of Ecosystem Studies in Millbrook, New York, Ostfeld has been bitten more than 100 times, and his body now reacts to tick saliva with an intense burning sensation. He’s an exception. Most people don’t even notice that they’ve been bitten until after the pest has had time to suck up a blood meal and transfer any infections it has circulating in its spit.

Around the world, diseases spread by ticks are on the rise. Reported cases of Lyme, the most common US tick-borne illness, have quadrupled since the 1990s. Other life-threatening infections like anaplasmosis, babesiosis, and Rocky Mountain spotted fever are increasing in incidence even more quickly than Lyme. Meat allergies caused by tick bites have skyrocketed from a few dozen a decade ago to more than 5,000 in the US alone, according to experts. And new tick-borne pathogens are emerging at a troubling clip; since 2004, seven new viruses and bugs transmitted through tick bite have shown up in humans in the US.

Scientists don’t know exactly which combination of factors—shifting climate patterns, human sprawl, deforestation—is leading to more ticks in more places. But there’s no denying the recent population explosion, especially of the species that carries Lyme disease: the black-legged tick.

“Whole new communities are being engulfed by this tick every year,” says Ostfeld. “And that means more people getting sick.

Tick science, surveillance, and management efforts have so far not kept pace. But the country’s increasingly dire tick-borne disease burden has begun to galvanize a groundswell of research interest and funding.

In 1942, Congress established the CDC specifically to prevent malaria, a public health crisis spreading through mosquitoes. Which is why many US states and counties today still have active surveillance programs for skeeters. The Centers for Disease Control and Prevention uses data from these government entities to regularly update distribution maps, track emerging threats (like Zika), and coordinate control efforts. No such system exists for ticks.

Public health departments are required to report back to the CDC on Lyme and six other tick-borne infections. Those cases combined with county-level surveys and some published academic studies make up the bulk of what the agency knows about national tick distribution. But this data, patchy and stuck in time, doesn’t do a lot to help public health officials on the ground.

“We’ve got national maps, but we don’t have detailed local information about where the worst areas for ticks are located,” says Ben Beard, chief of the CDC’s bacterial diseases branch in the division of vector-borne diseases. “The reason for that is there has never been public funding to support systematic tick surveillance efforts.

That’s something Beard is trying to change. He says the CDC is currently in the process of organizing a nationwide surveillance program, which could launch within the year. It will pull data collected by state health departments and the CDC’s five regional centers about tick prevalence and the pathogens they’re carrying to build a better picture of where outbreaks and hot spots are developing, especially on the expanding edge of tick populations.

The CDC is also a few years into a massive nationwide study it’s conducting with the Mayo Clinic, which will eventually enroll 30,000 people who’ve been bitten by ticks. Each one will be tested for known tick diseases, and next-generation sequencing conducted at CDC will screen for any other pathogens that might be present. Together with patient data, it should provide a more detailed picture of exactly what’s out there.

Together, these efforts are helping to change the way people and government agencies think about ticks as a public health threat.

“Responsibility for tick control has always fallen to individuals and homeowners,” says Beard. “It’s not been seen as an official civic duty, but we think it’s time whole communities got engaged. And getting better tick surveillance data will help us define risk for these communities in areas where people aren’t used to looking for tick-borne diseases.”

The trouble is that scientists also know very little about which interventions actually reduce those risks.

“There’s no shortage of products to control ticks,” says Ostfeld. “But it’s never been demonstrated that they do a good enough job, deployed in the right places, to prevent any cases of tick-borne disease.”

In a double-blind trial published in 2016, CDC researchers treated some yards with insecticides and others with a placebo. The treated yards knocked back tick numbers by 63 percent, but families living in the treated homes were still just as likely to be diagnosed with Lyme.

Ostfeld and his wife and research partner Felicia Keesing are in the middle of a four-year study to evaluate the efficacy of two tick-control methods in their home territory of Dutchess County, an area with one of the country’s highest rates of Lyme disease. It’s a private-public partnership between their academic institutions, the CDC, and the Steven and Alexandra Cohen Foundation, which provided a $5 million grant.

Ostfeld and Keesing are blanketing entire neighborhoods in either a natural fungus-based spray or tick boxes, or both. The tick boxes attract small mammal hosts, which get a splash of tick-killing chemicals when they venture inside. They check with all the human participants every two weeks for 10 months of the year to see if anyone’s gotten sick. By the end of 2020 the study should be able to tell them how well these methods, used together or separately on a neighborhood-wide scale, can reduce the risk of Lyme.

“If we get a definitive answer that these work the next task would be to figure out how to make such a program more broadly available. Who’s going to pay for it, who’s going to coordinate it?” says Ostfeld. “If it doesn’t work then perhaps the conclusion is maybe environmental control just can’t be done.”

In that case, people would be stuck with pretty much the same options they have today: protective clothing, repellants, and daily partner tick-checks. It’s better than nothing. But with more and more people getting sick, the US will need better solutions soon.

________________

**Comment**

Great article pointing out the scary fact that only 6 pathogens transmitted by ticks are being reported on.  There are currently 18 pathogens and counting…..so the numbers are woefully inadequate.

Here’s the list so far:  https://madisonarealymesupportgroup.com/2017/07/01/one-tick-bite-could-put-you-at-risk-for-at-least-6-different-diseases/

Babesiosis
Bartonellosis
Borrelia miyamotoi
Bourbon Virus
Colorado Tick Fever
Crimean-Congo hemorrhagic Fever
Ehrlichiosis/Anaplasmosis
Heartland Virus
Meat Allergy/Alpha Gal
Pacific Coast Tick Fever: Richettsia philipii
Powassan Encephalitis
Q Fever
Rickettsia parkeri Richettsiosis
Rocky Mountain Spotted Fever
STARI: Southern Tick-Associated Rash Illness
Tickborne meningoencephalitis
Tick Paralysis
Tularemia

And the number keeps growing…..but nobody’s keeping score.

Where Ticks Are and What They Carry – Science Conversation With Dr. Cameron

http://danielcameronmd.com/lyme-disease-science-conversation-ticks-diseases-they-carry/  Approx. 50 Min

Dr. Daniel Cameron, a leading Lyme disease expert, discusses where are the ticks and what are the diseases they carry.

________________

**Comment**

The word is finally getting out.  TICKS ARE EVERYWHERE!

Beaches:  https://madisonarealymesupportgroup.com/2018/06/07/ticks-on-beaches/

Rocks and picnic benches:  https://madisonarealymesupportgroup.com/2017/03/13/ticks-found-on-rocks/

Caves:  https://madisonarealymesupportgroup.com/2018/04/23/tick-borne-relapsing-fever-found-in-austin-texas-caves/, and https://madisonarealymesupportgroup.com/2017/10/27/israeli-kids-get-lyme-disease-from-ticks-in-caves/

Birds:  https://madisonarealymesupportgroup.com/2017/08/17/of-birds-and-ticks/

California:  https://madisonarealymesupportgroup.com/2018/05/19/infected-ticks-in-california-its-complicated/

In the South:  https://madisonarealymesupportgroup.com/2018/05/31/no-lyme-in-the-south-guess-again/, and https://madisonarealymesupportgroup.com/2017/10/06/remembering-dr-masters-the-rebel-for-lyme-patients-who-took-on-the-cdc-single-handedly/, and https://madisonarealymesupportgroup.com/2017/03/02/hold-the-press-arkansas-has-lyme/

Southern Hemisphere:  https://madisonarealymesupportgroup.com/2018/02/06/lyme-in-the-southern-hemisphere-sexual-transmission/

Australia:  https://madisonarealymesupportgroup.com/2016/11/03/ld-not-in-australia-here-we-go-again/

And everywhere else…..

Remember, there are 300 strains and counting of Borrelia worldwide and 100 strains and counting in the U.S.  Current CDC two-tiered testing tests for ONE strain!  Do the math….

For more:  https://madisonarealymesupportgroup.com/2018/05/27/study-conforms-permethrin-causes-ticks-to-drop-off-clothing/

https://madisonarealymesupportgroup.com/2018/06/06/mc-bugg-z/

 

 

 

 

Update on TBD’s in Travelers

https://www.ncbi.nlm.nih.gov/m/pubmed/29789953/

Update on Tick-Borne Bacterial Diseases in Travelers.

Review article

Eldin C, et al. Curr Infect Dis Rep. 2018.

Abstract

PURPOSE OF REVIEW: Ticks are the second most important vectors of infectious diseases after mosquitoes worldwide. The growth of international tourism including in rural and remote places increasingly exposes travelers to tick bite. Our aim was to review the main tick-borne infectious diseases reported in travelers in the past 5 years.

RECENT FINDINGS: In recent years, tick-borne bacterial diseases have emerged in travelers including spotted fever group (SFG) rickettsioses, borrelioses, and diseases caused by bacteria of the Anaplasmataceae family. African tick-bite fever, due to Rickettsia africae, is the most frequent agent reported in travelers returned from Sub-Saharan areas. Other SFG agents are increasingly reported in travelers, and clinicians should be aware of them. Lyme disease can be misdiagnosed in Southern countries. Organisms causing tick-borne relapsing fever are neglected pathogens worldwide, and reports in travelers have allowed the description of new species. Infections due to Anaplasmataceae bacteria are more rarely described in travelers, but a new species of Neoehrlichia has recently been detected in a traveler. The treatment of these infections relies on doxycycline, and travelers should be informed before the trip about prevention measures against tick bites.

______________

**Comment**

This review clearly shows how much work still needs to be done.  To boil down this complex illness to a round of doxycycline shows a simplistic understanding of these pathogens on steroids.  Mainstream researchers still haven’t gotten the memo that Eva Sapi reported about doxy throwing the spirochete into the non-cell wall form or the information that both pathologist Alan McDonald and microbiologist Tom Greer are finding spirochetes hiding in worms in the brains of folks with dementia and Alzheimer’s.

To announce doxy as the “one side fits all” treatment is truly uninformed.

While doxy is a great front-line drug, patients need to be monitored closely for symptoms.  Since testing is so poor, doctors should also be educated on:  https://madisonarealymesupportgroup.com/2017/09/05/empirical-validation-of-the-horowitz-questionnaire-for-suspected-lyme-disease/  Print out and complete the symptom check lists and take them with you to your appointment.

Remember, Lyme is the rock star we all know by name.  There are many wanna-be’s just as powerful often at play:  https://madisonarealymesupportgroup.com/2017/07/01/one-tick-bite-could-put-you-at-risk-for-at-least-6-different-diseases/  The number is actually 18 and counting.

Please encourage doctors to become educated.  It’s our only hope.

https://madisonarealymesupportgroup.com/2018/02/19/calling-all-doctors-please-become-educated-regarding-tick-borne-illness-heres-how/

Here is an example of good Lyme treatment:  https://madisonarealymesupportgroup.com/2016/02/13/lyme-disease-treatment/

Type other pathogens into the search bar to get other treatment suggestions.  Feel free to copy these off and share with your practitioner.

 

 

 

 

Panel Says TBI’s Have Reached Epidemic Levels

https://m.medicalxpress.com/news/2018-04-tick-borne-diseases-epidemic-panel.html

Tick-borne diseases reach epidemic levels, panel says

April 16, 2018
by Delthia Ricks, Newsday
Lyme disease
Adult deer tick, Ixodes scapularis. Credit: Scott Bauer/public domain

Tick-borne infections have reached epidemic proportions on Long Island, where children are disproportionately affected by Lyme disease and other infections transmitted by the eight-legged creatures, a panel of top scientists announced recently.

“Lyme disease is mostly a disease of children and curiously mostly a disease of boys,” Jorge Benach said at a recent symposium at Stony Brook University School of Medicine. Benach, who discovered the bacterium that causes Lyme disease, is a molecular geneticist at Stony Brook University School of Medicine.

His observation that Lyme disease is mostly an  of children was corroborated by Dr. Christy Beneri, a pediatrician at Stony Brook Children’s Hospital. She said her institution encountered a wide range of tick-borne illnesses annually and that boys tended to outnumber girls in the number of infections. The most likely reason for the disparity, Beneri said, is the tendency among boys to play outdoors in wooded areas where ticks thrive.

In the extensive pediatric research Beneri presented at the symposium was evidence of some children developing Bell’s palsy, a temporary facial paralysis that occurs when the Lyme bacterium affects a cranial nerve. The paralysis resolves with antibiotic treatment, Beneri said.

Beyond the Lyme bacterium, ticks on Long Island have been found to harbor babesia and anaplasma.

Babesia are protozoa, or parasitic, infectious agents that hone in on red blood cells, similar to the way a malaria parasite invades the same cells.

Anaplasmosis is an infection caused by the bacterium Anaplasma phagocytophilum. It can trigger aches, fever, chills and confusion.

Beneri and Benach were among five leading Stony Brook experts, including university president Dr. Samuel Stanley, who addressed what they described as a mounting epidemic of infections caused by the ever-expanding range of ticks. Stanley, who was the first speaker, is a specialist in infectious diseases.

“New York bears a disproportionate impact from tick-borne diseases,” Stanley said at the symposium, which was held in a lecture hall in the university’s health sciences building. “This is a regional and state problem.”

New York has the highest number of confirmed Lyme  cases nationwide, according to the U.S. Centers for Disease Control and Prevention, which has cataloged more than 95,000 Lyme infections in the state since 1986. Suffolk County has long been ground zero for the ailment on Long Island, studies consistently have shown.

“Cases in Suffolk County hover between 500 and 700 and this is just for the reported cases,” Benach said, noting that Suffolk has among the highest rates of many tick-transmitted infections because of the dense infiltration of the insects in county.

Typical Lyme symptoms include fever, headache, fatigue, and a characteristic skin rash called erythema migrans, said Dr. Luis Marcos, a specialist in internal medicine and infectious diseases.

Marcos presented data showing the wide range of illnesses caused by ticks throughout the region, including Borrelia miyamotoi, a corkscrew-shaped bacterium identified in recent years as the cause of a relapsing fever.

Dr. Eric Spitzer, a pathologist, discussed the many laboratory tests that Stony Brook used to arrive at a diagnosis of a tick-transmitted illness. He said that for years, doctors nationwide sent specimens to the university for analysis because of its well-known precision. Testing of those specimens earned the university $32 million over a 20-year period, he said.

Panelists identified the most prevalent ticks on Long Island as the American dog tick; the invasive lone star tick, which migrated from Southern states; and the blacklegged tick, known as deer tick.

_______________

For more:  https://madisonarealymesupportgroup.com/2016/02/13/lyme-disease-treatment/

https://madisonarealymesupportgroup.com/2016/01/16/babesia-treatment/

https://madisonarealymesupportgroup.com/2016/03/08/anaplasmosis/

http://danielcameronmd.com/best-antibiotics-treat-borrelia-miyamotoi/ The study authors demonstrated that B. miyamotoi is susceptible to doxycycline, azithromycin, and ceftriaxone but resistant to amoxicillin in vitro. The next step would be to show whether these drugs work in patients.

 

]

 

First Detection in Italy of Borrelia Miyamotoi in Ixodes Ricinus Ticks

https://www.ncbi.nlm.nih.gov/m/pubmed/29554975/

First detection of Borrelia miyamotoi in Ixodes ricinus ticks from northern Italy.

Ravagnan S, et al. Parasit Vectors. 2018.

Abstract

BACKGROUND: Borrelia miyamotoi is a spirochete transmitted by several ixodid tick species. It causes a relapsing fever in humans and is currently considered as an emerging pathogen. In Europe, B. miyamotoi seems to occur at low prevalence in Ixodes ricinus ticks but has a wide distribution. Here we report the first detection of B. miyamotoi in Ixodes ricinus ticks collected in two independent studies conducted in 2016 in the north-eastern and north-western Alps, Italy.

RESULTS: Three out of 405 nymphs (0.74%) tested positive for Borrelia miyamotoi. In particular, B. miyamotoi was found in 2/365 nymphs in the western and in 1/40 nymphs in the eastern alpine area. These are the first findings of B. miyamotoi in Italy.

CONCLUSIONS: Exposure to B. miyamotoi and risk of human infection may occur through tick bites in northern Italy. Relapsing fever caused by Borrelia miyamotoi has not yet been reported in Italy, but misdiagnoses with tick-borne encephalitis, human granulocytic anaplasmosis or other relapsing fever can occur. Our findings suggest that B. miyamotoi should be considered in the differential diagnosis of febrile patients originating from Lyme borreliosis endemic regions. The distribution of this pathogen and its relevance to public health need further investigation.

_____________

**Comment**

That last sentence is the understatement of the year.  Unfortunately, Science is in the Dark Ages regarding all things Lyme/MSIDS with experts clinging to ancient, dusty, and often unscientific research that desperately needs updating.

https://madisonarealymesupportgroup.com/2018/03/11/italy-5-year-tick-survey/  It appears our Italian friends now are on record for having Rickettsia species, Anaplasma, & Bartonella.

19554184_1928116994100157_3435542982596343683_n

My daughter in Rome, Italy

Please remember that up until 1994 B. miyamotoi wasn’t even on the radar except in Japan and there it was in Ixodes persulcatus ticks.  Human cases weren’t reported until 2011 in Russia and then the U.S., Europe, and Japan.  Think of all the patients who presented with severe illness but went undiagnosed.  This is still happening.  

https://www.ncbi.nlm.nih.gov/m/pubmed/25892254/?i=2&from=/28714333/related

B. miyamotoi species are usually transmitted by soft-bodied ticks or lice; however, it has been found in at least six Ixodes tick species in North America and Eurasia that transmit Lyme as well.  A great reminder that we need to be very careful about being closed-minded regarding what ticks carry what.  

Also important to note is the lack of belief of mainstream medicine on the severity, complexity, and length of illness these pathogens can cause.  While it’s true some who are treated quickly get better, others do not and suffer for years with debilitating illness:  https://madisonarealymesupportgroup.com/2018/02/02/hopkins-study-shows-severe-symptoms-in-some-after-lyme-treatment/  (Please read my comment after the study)

Mainstream medicine STILL does not take into account ALL of the pathogens involved.  They test and treat for ONE pathogen, whereas patients are often coinfected with numerous pathogens – including bacteria, viruses, funguses, parasites, and even nematodes (worms).  Until patients are treated for ALL pathogens and a faulty immune system they will not improve.  Again, all the doxy in the world isn’t going to cure this.  https://madisonarealymesupportgroup.com/2017/07/01/one-tick-bite-could-put-you-at-risk-for-at-least-6-different-diseases/  (The actual number is 16 & counting)